5 resultados para Product quality
em Dalarna University College Electronic Archive
Resumo:
Companies implement a module product assortment as a part of their strategy to, among others, shorten lead-times, increase the product quality and to create more product variants with fever parts. However, the increased number of variants becomes a challenging task for the personnel responsible for the product verifications. By implementing verifications at module level, so called MPV (Module Property Verification) several advantages ensue. The advantages is not only a decrease in cost of verifications, but also a decrease in repair times, occupied space, storages with spare parts, and repair tools. Further, MPV also give an increased product quality due to an increased understanding of which defects that may occur. As an approach to implement MPV, this paper discusses defects and verification processes based on a study at a Swedish company. It also describes a matrix which is used to map relations between company specific cost drivers and so called verification factors. The matrix may indicate cost drivers which have a large impact on the total cost of product verifications.
Resumo:
Syftet med denna studie var att komma fram till om kedjeföretag inom detaljhandeln intagit ett serviceperspektiv, där fokus ligger på relationer. Detta genom att undersöka hur aktörerna använder sin frontlinjepersonal. En kvalitativ flerfallstudie har genomförts där tre kedjeföretag bidragit med information rörande transaktions- eller relationsorienterad försäljning, medarbetarskap och betraktande av frontlinjepersonalen. Utgångspunkten för analys av fallstudierna har varit två intervjuer per företag. Dels med butikens högste chef samt med en medarbetare. Det teoretiska ramverket i denna studie rörande medarbetarskap, skapande av värde/nytta för kund samt intern marknadsföring som möjliggör att kund upplever hög tjänstekvalité, signalerar ett tankesätt inom ett serviceperspektiv och används för att svara på syftet. Huruvida kedjeföretagen intagit ett serviceperspektiv fullt ut, är inte möjligt att konkludera i denna småskaliga forskningsuppsats. Vidare forskning är nödvändig. Resultatet från de undersökta företagen i denna studie visar på tendenser till att utveckla ett serviceperspektiv med fokus på goda kundrelationer, vilket är det som skall ge framgång. De undersökta kedjeföretagen skiljer sig dock åt vad gäller intagandet av ett serviceperspektiv. Exempelvis förlitar sig ett företag alltjämt till lågt pris och produktens egenskaper som primära faktorer för intäktsskapande, medan andra premierar det personliga mötet.
Resumo:
Aim: The overall aim of this thesis was to gain a deeper understanding of older people's view of health and care while dependent on community care. Furthermore to describe and compare formal caregivers' perceptions of quality of care, working conditions, competence, general health, and factors associated with quality of care from the caregivers' perspective. Method: Qualitative interviews were conducted with 19 older people in community care who were asked to describe what health and ill health((I), good and bad care meant for them (II). Data were analyzed using content analysis (I) and a phenomenological analysis (II). The formal caregivers; 70 nursing assistants (NAs) 163 enrolled nurses (ENs) and 198 registered nurses (RNs), answered a questionnaire consisting of five instruments: quality of care from the patient's perspective modified to formal caregivers, creative climate questionnaire, stress of conscience, health index, sense of coherence and items on education and competence (III). Statistical analyses were performed containing descriptive statistics, and comparisons between the occupational groups were made using Kruskal-Wallis ANOVA, Mann-Whitney U-test and Pearson's Chi-square test (III). Pearson's product moment correlation analysis and multiple regression analysis were performed studying the associations between organizational climate, stress of conscience, competence, general health and sense of coherence with quality of care (IV). Results: The older people's health and well-being were related to their own ability to adapt to and compensate for their disabilities and was described as negative and positive poles of autonomy vs. dependence, togetherness vs. being an onlooker, security vs. insecurity and tranquility vs. disturbance (I). The meaning of good care (II) was that the formal caregivers respected the older people as unique individuals, having the opportunity to live their lives as usual and receiving a safe and secure care. Good care could be experienced when the formal caregivers had adequate knowledge and competence in caring for older people, adequate time and continuity in the care organization (II). Formal caregivers reported higher perceived quality of care in the dimensions medical-technical competence and physical-technical conditions than in identity-oriented approach and socio-cultural atmosphere (III). In the organizational climate three of the dimensions were close to the value of a creative climate and in seven near a stagnant climate. The formal caregivers reported low rate of stress of conscience. The RNs reported to a higher degree than the NAs/ENs a need to gain more knowledge, but the NAs and the ENs more often received training during working hours. The RNs reported lower emotional well-being than the NAs/ENs (III). The formal caregivers' occupation, organizational climate and stress of conscience were associated with perceived quality of care (IV). Implications: The formal caregivers should have an awareness of the importance of kindness and respect, supporting the older people to retain control over their lives. The nursing managers should employ highly competent and adequate numbers of skilled formal caregivers, organize formal caregivers having round the clock continuity. Improvements of organizational climate and stress of conscience are of importance for good quality of care.
Resumo:
Modular product architectures have generated numerous benefits for companies in terms of cost, lead-time and quality. The defined interfaces and the module’s properties decrease the effort to develop new product variants, and provide an opportunity to perform parallel tasks in design, manufacturing and assembly. The background of this thesis is that companies perform verifications (tests, inspections and controls) of products late, when most of the parts have been assembled. This extends the lead-time to delivery and ruins benefits from a modular product architecture; specifically when the verifications are extensive and the frequency of detected defects is high. Due to the number of product variants obtained from the modular product architecture, verifications must handle a wide range of equipment, instructions and goal values to ensure that high quality products can be delivered. As a result, the total benefits from a modular product architecture are difficult to achieve. This thesis describes a method for planning and performing verifications within a modular product architecture. The method supports companies by utilizing the defined modules for verifications already at module level, so called MPV (Module Property Verification). With MPV, defects are detected at an earlier point, compared to verification of a complete product, and the number of verifications is decreased. The MPV method is built up of three phases. In Phase A, candidate modules are evaluated on the basis of costs and lead-time of the verifications and the repair of defects. An MPV-index is obtained which quantifies the module and indicates if the module should be verified at product level or by MPV. In Phase B, the interface interaction between the modules is evaluated, as well as the distribution of properties among the modules. The purpose is to evaluate the extent to which supplementary verifications at product level is needed. Phase C supports a selection of the final verification strategy. The cost and lead-time for the supplementary verifications are considered together with the results from Phase A and B. The MPV method is based on a set of qualitative and quantitative measures and tools which provide an overview and support the achievement of cost and time efficient company specific verifications. A practical application in industry shows how the MPV method can be used, and the subsequent benefits
Resumo:
The desire to conquer markets through advanced product design and trendy business strategies are still predominant approaches in industry today. In fact, product development has acquired an ever more central role in the strategic planning of companies, and it has extended its influence to R&D funding levels as well. It is not surprising that many national R&D project frameworks within the EU today are dominated by product development topics, leaving production engineering, robotics, and systems on the sidelines. The reasons may be many but, unfortunately, the link between product development and the production processes they cater for are seldom treated in depth. The issue dealt with in this article relates to how product development is applied in order to attain the required production quality levels a company may desire, as well as how one may counter assembly defects and deviations through quantifiable design approaches. It is recognized that product verifications (tests, inspections, etc.) are necessary, but the application of these tactics often result in lead-time extensions and increased costs. Modular architectures improve this by simplifying the verification of the assembled product at module level. Furthermore, since Design for Assembly (DFA) has shown the possibility to identify defective assemblies, it may be possible to detect potential assembly defects already in the product and module design phase. The intention of this paper is to discuss and describe the link between verifications of modular architectures, defects and design for assembly. The paper is based on literature and case studies; tables and diagrams are included with the intention of increasing understanding of the relation between poor designs, defects and product verifications.