6 resultados para Product Line Engineering
em Dalarna University College Electronic Archive
Resumo:
Product verifications have become a cost-intensive and time-consuming aspect of modern electronics production, but with the onset of an ever-increasing miniaturisation, these aspects will become even more cumbersome. One may also go as far as to point out that certain precision assembly, such as within the biomedical sector, is legally bound to have 0 defects within production. Since miniaturisation and precision assembly will soon become a part of almost any product, the verifications phases of assembly need to be optimised in both functionality and cost. Another aspect relates to the stability and robustness of processes, a pre-requisite for flexibility. Furthermore, as the re-engineering cycle becomes ever more important, all information gathered within the ongoing process becomes vital. In view of these points, product, or process verification may be assumed to be an important and integral part of precision assembly. In this paper, product verification is defined as the process of determining whether or not the products, at a given phase in the life-cycle, fulfil the established specifications. Since the product is given its final form and function in the assembly, the product verification normally takes place somewhere in the assembly line which is the focus for this paper.
Resumo:
The desire to conquer markets through advanced product design and trendy business strategies are still predominant approaches in industry today. In fact, product development has acquired an ever more central role in the strategic planning of companies, and it has extended its influence to R&D funding levels as well. It is not surprising that many national R&D project frameworks within the EU today are dominated by product development topics, leaving production engineering, robotics, and systems on the sidelines. The reasons may be many but, unfortunately, the link between product development and the production processes they cater for are seldom treated in depth. The issue dealt with in this article relates to how product development is applied in order to attain the required production quality levels a company may desire, as well as how one may counter assembly defects and deviations through quantifiable design approaches. It is recognized that product verifications (tests, inspections, etc.) are necessary, but the application of these tactics often result in lead-time extensions and increased costs. Modular architectures improve this by simplifying the verification of the assembled product at module level. Furthermore, since Design for Assembly (DFA) has shown the possibility to identify defective assemblies, it may be possible to detect potential assembly defects already in the product and module design phase. The intention of this paper is to discuss and describe the link between verifications of modular architectures, defects and design for assembly. The paper is based on literature and case studies; tables and diagrams are included with the intention of increasing understanding of the relation between poor designs, defects and product verifications.
Resumo:
Companies implement a module product assortment as a part of their strategy to, among others, shorten lead-times, increase the product quality and to create more product variants with fever parts. However, the increased number of variants becomes a challenging task for the personnel responsible for the product verifications. By implementing verifications at module level, so called MPV (Module Property Verification) several advantages ensue. The advantages is not only a decrease in cost of verifications, but also a decrease in repair times, occupied space, storages with spare parts, and repair tools. Further, MPV also give an increased product quality due to an increased understanding of which defects that may occur. As an approach to implement MPV, this paper discusses defects and verification processes based on a study at a Swedish company. It also describes a matrix which is used to map relations between company specific cost drivers and so called verification factors. The matrix may indicate cost drivers which have a large impact on the total cost of product verifications.
Resumo:
This paper presents the result from a case study at Scania on product development processes. The objective with the case study was to gather information on Scania’s product development process (PDP) including the use of CAD and simulation tools, and project work. The objective was also to find any deviations or different interpretations among the employees on the PDP. To gather the information, semi-structured tape-recorded interviews have been used to ensure that individual interpretations from the interviewees could be gathered. Scania uses a defined and structured PDP which facilitates concurrent and cross-functional work. The PDP is implemented and followed to various degrees. The newly employed personnel may have difficulties with communication, both to find and to give information. Although, newly graduated personnel may find it easier to adapt to changes, and also to use a structured process which they have studied at universities. It was also known during the case study that the PDP is a major support for the newly employed personnel, which in turn decreases the time to get into the same working process as the more experienced personnel. Employees with decades of experience know the right sources from which to both give and gather information. Also, the terminology and definitions in the product development process may not be used as intended. This makes it difficult for other project members or teams who need to interpret the information received. At the same time, the routines among the more experienced personnel, which have been set-up throughout the years, make them more inflexible in adapting changes. The findings in the case study as well as challenges with implementing the PDP are known to Scania and are a part of the continuing work with improvement.
Resumo:
This study aimed to investigate what proportion of two household staples, soap and crispbread products, in two Swedish supermarkets had English product names or descriptions, and attempted a qualitative analysis of the English language used. Out of the Swedish brands, 54-62% of the soap products had names and/or product descriptions containing English, compared to 13-15% of the crispbread; these differences were in line with previous research, suggesting English is used more to market certain product groups than other ones. Earlier studies have also proposed that English could be considered an ‘elite’ language in Sweden, and it might thus be more commonly found on more exclusive/expensive products, or in the supermarket primarily aiming at higher-income customers. However, the differences between the two supermarkets, and between the more and less expensive products, were not great enough for any firm conclusions. When products had a mixture of languages on the label, English was most often used for product names or part of names, not so often for product descriptions. Further studies with a larger amount of data would be required for more reliable conclusions, especially for the qualitative analyses. It would also be interesting to investigate customers’ attitudes towards the use of English on product labels.