4 resultados para Power system maintenance
em Dalarna University College Electronic Archive
Resumo:
The aim of this paper is to point out benefits as well as disadvantages associated with the use of locally available, not necessarily standardized, components in stand-alone electrical power systems at rural locations. Advantages and challenges arising when the direct involvement in design, construction and maintenance of the power system is reserved to people based in the area of implementation are discussed. The presented research is centered around one particular PV-diesel hybrid system in Tanzania; a case study in which technical and social aspects related to the particular power system are studied.
Resumo:
This report describes the outcome of the first visit to Tanzania, within the project "Mini-grids supplied by renewable energy - improving technical and social feasibility". The trip included visits to three different organizations; Ihushi Development Center (IDC) near Mwanza, TIDESO near Bukoba, and Mavuno Project in Karagwe. At IDC, a brief evaluation of the current power system was done and measuring equipment for long term measurements were installed. At all three locations investigations regarding the current and future electricity demand were conducted and connections to people relevant to the study were established. The report is including as well some technical specifications as some observations regarding organization and management of the technical systems. The trip was including only short visits and therefore only brief introductions to the different organizations, based on observations done by the author. The report is hence describing the author’s understanding of the technical system and social structures after only short visits to each of the organizations, and may differ from observations done at another point in time, over a different time period, or by some other person.This report describes the outcome of the first visit to Tanzania, within the project "Mini-grids supplied by renewable energy - improving technical and social feasibility". The trip included visits to three different organizations; Ihushi Development Center (IDC) near Mwanza, TIDESO near Bukoba, and Mavuno Project in Karagwe. At IDC, a brief evaluation of the current power system was done and measuring equipment for long term measurements were installed. At all three locations investigations regarding the current and future electricity demand were conducted and connections to people relevant to the study were established. The report is including as well some technical specifications as some observations regarding organization and management of the technical systems. The trip was including only short visits and therefore only brief introductions to the different organizations, based on observations done by the author. The report is hence describing the author’s understanding of the technical system and social structures after only short visits to each of the organizations, and may differ from observations done at another point in time, over a different time period, or by some other person.
Resumo:
In this thesis the solar part of a large grid-connected photovoltaic system design has been done. The main purpose was to size and optimize the system and to present figures helping to evaluate the prospective project rationality, which can potentially be constructed on a contaminated area in Falun. The methodology consisted in PV market study and component selection, site analysis and defining suitable area for solar installation; and system configuration optimization based on PVsyst simulations and Levelized Cost of Energy calculations. The procedure was mainly divided on two parts, preliminary and detailed sizing. In the first part the objective was complex, which included the investigation of the most profitable component combination and system optimization due to tilt and row distance. It was done by simulating systems with different components and orientations, which were sized for the same 100kW inverter in order to make a fair comparison. For each simulated result a simplified LCOE calculation procedure was applied. The main results of this part show that with the price of 0.43 €/Wp thin-film modules were the most cost effective solution for the case with a great advantage over crystalline type in terms of financial attractiveness. From the results of the preliminary study it was possible to select the optimal system configuration, which was used in the detailed sizing as a starting point. In this part the PVsyst simulations were run, which included full scale system design considering near shadings created by factory buildings. Additionally, more complex procedure of LCOE calculation has been used here considered insurances, maintenance, time value of money and possible cost reduction due to the system size. Two system options were proposed in final results; both cover the same area of 66000 m2. The first one represents an ordinary South faced design with 1.1 MW nominal power, which was optimized for the highest performance. According to PVsyst simulations, this system should produce 1108 MWh/year with the initial investment of 835,000 € and 0.056 €/kWh LCOE. The second option has an alternative East-West orientation, which allows to cover 80% of occupied ground and consequently have 6.6 MW PV nominal power. The system produces 5388 MWh/year costs about 4500,000 € and delivers electricity with the same price of 0.056 €/kWh. Even though the EW solution has 20% lower specific energy production, it benefits mainly from lower relative costs for inverters, mounting and annual maintenance expenses. After analyzing the performance results, among the two alternatives none of the systems showed a clear superiority so there was no optimal system proposed. Both, South and East-West solutions have own advantages and disadvantages in terms of energy production profile, configuration, installation and maintenance. Furthermore, the uncertainty due to cost figures assumptions restricted the results veracity.
Resumo:
This report contains a suggestion for a simple monitoring and evaluation guideline for PV-diesel hybrid systems. It offers system users a way to better understand if their system is operated in a way that will make it last for a long time. It also gives suggestions on how to act if there are signs of unfavourable use or failure. The application of the guide requires little technical equipment, but daily manual measurements. For the most part, it can be managed by pen and paper, by people with no earlier experience of power systems.The guide is structured and expressed in a way that targets PV-diesel hybrid system users with no, or limited, earlier experience of power engineering. It is less detailed in terms of motivations for certain choices and limitations, but rich in details concerning calculations, evaluation procedures and maintenance routines. A more scientific description of the guide can be found in a related journal article.