2 resultados para Power Grinding Equipment
em Dalarna University College Electronic Archive
Resumo:
In an office building in the US the office equipment uses about 7% of the total electricity use. Eventhough this is a low number, there is still a reason to save more energy, especially since one third of theenergy savings are lost when power management is not enabled.The core in the project ”Power Management Controls” is to develop a voluntary standard, The UserInterface Standard, that manufacturers of office equipment can use as a reference when they developnew equipment and design new interfaces. The interface is an important part of the use of powermanagement and doing this should increase the use of power management and save more energy. Theinterfaces are ofter hidden or inconsistent and confusing, which makes it harder for the user tounderstand power management. A more consistent interface makes it easier for the user to understandthe meaning of an interface and power management itselfThe standard consists of six different parts, which describe what can be done to achieve a consistentinterface. The standard also describes the part of the project called Dynamic Behavior. This part isconcentrating on the interfaces and the behavior of the device over time, which is important for the userto understand.The purpose of this degree project is to study and participate in the project ”Power ManagementControls”, and to understand what is being done to save more energy.
Resumo:
Stainless steels were developed in the early 20th century and are used where both the mechanical properties of steels and corrosion resistance are required. There is continuous research to allow stainless steel components to be produced in a more economical way and be used in more harsh environments. A necessary component in this effort is to correlate the service performance with the production processes. The central theme of this thesis is the mechanical grinding process. This is commonly used for producing stainless steel components, and results in varied surface properties that will strongly affect their service life. The influence of grinding parameters including abrasive grit size, machine power and grinding lubricant were studied for 304L austenitic stainless steel (Paper II) and 2304 duplex stainless steel (Paper I). Surface integrity was proved to vary significantly with different grinding parameters. Abrasive grit size was found to have the largest influence. Surface defects (deep grooves, smearing, adhesive/cold welding chips and indentations), a highly deformed surface layer up to a few microns in thickness and the generation of high level tensile residual stresses in the surface layer along the grinding direction were observed as the main types of damage when grinding stainless steels. A large degree of residual stress anisotropy is interpreted as being due to mechanical effects dominating over thermal effects. The effect of grinding on stress corrosion cracking behaviour of 304L austenitic stainless steel in a chloride environment was also investigated (Paper III). Depending on the surface conditions, the actual loading by four-point bend was found to deviate from the calculated value using the formula according to ASTM G39 by different amounts. Grinding-induced surface tensile residual stress was suggested as the main factor to cause micro-cracks initiation on the ground surfaces. Grinding along the loading direction was proved to increase the susceptibility to chloride-induced SCC, while grinding perpendicular to the loading direction improved SCC resistance. The knowledge obtained from this work can provide a reference for choosing appropriate grinding parameters when fabricating stainless steel components; and can also be used to help understanding the failure mechanism of ground stainless steel components during service.