2 resultados para Potential applications
em Dalarna University College Electronic Archive
Resumo:
Electromagnetically induced transparency (EIT) is an important tool for controlling light propagation and nonlinear wave mixing in atomic gases with potential applications ranging from quantum computing to table top tests of general relativity. Here we consider EIT in an atomic Bose-Einstein condensate (BEC) trapped in a double-well potential. A weak probe laser propagates through one of the wells and interacts with atoms in a three-level Lambda configuration. The well through which the probe propagates is dressed by a strong control laser with Rabi frequency Omega(mu), as in standard EIT systems. Tunneling between the wells at the frequency g provides a coherent coupling between identical electronic states in the two wells, which leads to the formation of interwell dressed states. The macroscopic interwell coherence of the BEC wave function results in the formation of two ultranarrow absorption resonances for the probe field that are inside of the ordinary EIT transparency window. We show that these new resonances can be interpreted in terms of the interwell dressed states and the formation of a type of dark state involving the control laser and the interwell tunneling. To either side of these ultranarrow resonances there is normal dispersion with very large slope controlled by g. We discuss prospects for observing these ultranarrow resonances and the corresponding regions of high dispersion experimentally.
Resumo:
Sustainable methods are required to protect newly planted tree seedlings from insect herbivore attack. To this end, here Norway spruce (Picea abies (L.) Karst.) seeds were treated with 2.5 mM nicotinamide (NIC), 2.5 mM nicotinic acid (NIA), 3 mM jasmonic acid (JA) or 0.2 mM 5-azacytidine (5-Aza), and 6-month-old seedlings grown from these seeds were planted at a reforestation area in central Sweden. Attack by pine weevils (Hylobius abietis) was reduced by 50 per cent by NIC treatment, 62.5 per cent by JA treatment and 25 per cent by 5-Aza treatment, when compared with seedlings grown from untreated seeds. Watering 18-month-old spruce seedlings with 2 mM NIC or 2 mM NIA did reduce attack during the first season in the field by 40 and 53 per cent, respectively, compared with untreated plants. Girdling was also reduced by the different treatments. Analysis of conifer seedlings treated with 5-Aza points at a possible involvement of epigenetic mechanisms in this defensive capacity. This is supported by a reduced level of DNA methylation in the needles of young spruce seedlings grown in a greenhouse from NIC-treated seeds. Seed treatment for seedling defense potentiation is simple, inexpensive and also a new approach for forestry with many potential applications.