2 resultados para Populations of models, Latin Hypercube Sampling

em Dalarna University College Electronic Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Backgound and aims: The main purpose of the PEDAL study is to identify and estimate sample individual pharmacokinetic- pharmacodynamic (PK/PD) models for duodenal infusion of levodopa/carbidopa (Duodopa®) that can be used for in numero simulation of treatment strategies. Other objectives are to study the absorption of Duodopa® and to form a basis for power calculation for a future larger study. PK/PD based on oral levodopa is problematic because of irregular gastric emptying. Preliminary work with data from [Gundert-Remy U et al. Eur J Clin Pharmacol 1983;25:69-72] suggested that levodopa infusion pharmacokinetics can be described by a two-compartment model. Background research led to a hypothesis for an effect model incorporating concentration-unrelated fluctuations, more complex than standard E-max models. Methods: PEDAL involved a few patients already on Duodopa®. A bolus dose (normal morning dose plus 50%) was given after a washout during night. Data collection continued until the clinical effect was back at baseline. The procedure was repeated on two non-consecutive days per patient. The following data were collected in 5 to 15 minutes intervals: i) Accelerometer data. ii) Three e-diary questions about ability to walk, feelings ofoff” and “dyskinesia”. iii) Clinical assessment of motor function by a physician. iv) Plasma concentrations of levodopa, carbidopa and the metabolite 3-O-methyldopa. The main effect variable will be the clinical assessment. Results: At date of abstract submission, lab analyses were currently being performed. Modelling results, simulation experiments and conclusions will be presented in our poster.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Genetic variation for environmental sensitivity indicates that animals are genetically different in their response to environmental factors. Environmental factors are either identifiable (e.g. temperature) and called macro-environmental or unknown and called micro-environmental. The objectives of this study were to develop a statistical method to estimate genetic parameters for macro- and micro-environmental sensitivities simultaneously, to investigate bias and precision of resulting estimates of genetic parameters and to develop and evaluate use of Akaike’s information criterion using h-likelihood to select the best fitting model. Methods: We assumed that genetic variation in macro- and micro-environmental sensitivities is expressed as genetic variance in the slope of a linear reaction norm and environmental variance, respectively. A reaction norm model to estimate genetic variance for macro-environmental sensitivity was combined with a structural model for residual variance to estimate genetic variance for micro-environmental sensitivity using a double hierarchical generalized linear model in ASReml. Akaike’s information criterion was constructed as model selection criterion using approximated h-likelihood. Populations of sires with large half-sib offspring groups were simulated to investigate bias and precision of estimated genetic parameters. Results: Designs with 100 sires, each with at least 100 offspring, are required to have standard deviations of estimated variances lower than 50% of the true value. When the number of offspring increased, standard deviations of estimates across replicates decreased substantially, especially for genetic variances of macro- and micro-environmental sensitivities. Standard deviations of estimated genetic correlations across replicates were quite large (between 0.1 and 0.4), especially when sires had few offspring. Practically, no bias was observed for estimates of any of the parameters. Using Akaike’s information criterion the true genetic model was selected as the best statistical model in at least 90% of 100 replicates when the number of offspring per sire was 100. Application of the model to lactation milk yield in dairy cattle showed that genetic variance for micro- and macro-environmental sensitivities existed. Conclusion: The algorithm and model selection criterion presented here can contribute to better understand genetic control of macro- and micro-environmental sensitivities. Designs or datasets should have at least 100 sires each with 100 offspring.