6 resultados para Population Model
em Dalarna University College Electronic Archive
Resumo:
In the era of globalization, countries compete with each other for attention, respect and trust of potential consumers, investors, tourists, media and governments of other nations. Branding is the most powerful tool that a nation can utilize for effective differentiation strategies and for creating competitive advantage over other nations. Unfortunately, not every nations or destination marketers have a broad understanding of the concept of branding and how a country can be successfully branded. Hence, this study has proposed a model that could be used as a valuable guide for country branding. Also the model is recommended for countries struggling with image crisis; on the mission to improve the image internationally. Nigeria is a good example of countries with image crisis; it is one of the most populated countries in the world with a population of about 160 million inhabitants and growth rate of 2.553percent annually. Despite the abundant resources (e.g. coal, petroleum, natural gas etc.) that the nation is endowed with, it is quite disappointing that the population below poverty line is still at the alarming rate of 70percent of the total population. The mismanagement and poor leadership of the nation characterised by corruption, fraud, embezzlement of public fund etc. has culminated into serious image crisis that is slowing down the potential for investment and economic growth. However, there has been series of image rebranding campaigns but no tangible achievement has been recorded. It is quite questionable though, if image rebranding will provide the kind of future that Nigeria envisaged, considering the socio-political situation and the economic imbalance; compounded by the obvious fact that the nation has no known brand. Therefore, this paper argues that there is need to redirect the effort invested on image rebranding to the creation of a unique and competitive brand for the country. It was established from the study that a nation’s brand is capable of improving the reputation of the nation as well as stimulate the expectation of the target audience. However, it was also established from the study that a wrong approach to branding could mislead the target audience and attract negative publicity. Hence, as a contribution of the study to the field of branding, a model was proposed as a functional guide for country branding. Also, considering the abysmal performance of Nigeria’s image in the international community and to strengthen the argument that brand creation is required for the country; an experimental application of the proposed model was conducted using Nigeria as the case country. The first phase of the model suggested a major improvement in the society; this is required to further enhance the strengths of the country and to motivate the much needed community participation and confidence in the brand creation. It is the conclusion of the study that a strong nation brand can offset the image problem if it is built on something concrete, genuine, and uniquely identifiable with the country, capable of connecting to the cognitive psychology of the target audience.
Resumo:
Objective Levodopa in presence of decarboxylase inhibitors is following two-compartment kinetics and its effect is typically modelled using sigmoid Emax models. Pharmacokinetic modelling of the absorption phase of oral distributions is problematic because of irregular gastric emptying. The purpose of this work was to identify and estimate a population pharmacokinetic- pharmacodynamic model for duodenal infusion of levodopa/carbidopa (Duodopa®) that can be used for in numero simulation of treatment strategies. Methods The modelling involved pooling data from two studies and fixing some parameters to values found in literature (Chan et al. J Pharmacokinet Pharmacodyn. 2005 Aug;32(3-4):307-31). The first study involved 12 patients on 3 occasions and is described in Nyholm et al. Clinical Neuropharmacology 2003:26:156-63. The second study, PEDAL, involved 3 patients on 2 occasions. A bolus dose (normal morning dose plus 50%) was given after a washout during night. Plasma samples and motor ratings (clinical assessment of motor function from video recordings on a treatment response scale between -3 and 3, where -3 represents severe parkinsonism and 3 represents severe dyskinesia.) were repeatedly collected until the clinical effect was back at baseline. At this point, the usual infusion rate was started and sampling continued for another two hours. Different structural absorption models and effect models were evaluated using the value of the objective function in the NONMEM package. Population mean parameter values, standard error of estimates (SE) and if possible, interindividual/interoccasion variability (IIV/IOV) were estimated. Results Our results indicate that Duodopa absorption can be modelled with an absorption compartment with an added bioavailability fraction and a lag time. The most successful effect model was of sigmoid Emax type with a steep Hill coefficient and an effect compartment delay. Estimated parameter values are presented in the table. Conclusions The absorption and effect models were reasonably successful in fitting observed data and can be used in simulation experiments.
Resumo:
This thesis contributes to the heuristic optimization of the p-median problem and Swedish population redistribution. The p-median model is the most representative model in the location analysis. When facilities are located to a population geographically distributed in Q demand points, the p-median model systematically considers all the demand points such that each demand point will have an effect on the decision of the location. However, a series of questions arise. How do we measure the distances? Does the number of facilities to be located have a strong impact on the result? What scale of the network is suitable? How good is our solution? We have scrutinized a lot of issues like those. The reason why we are interested in those questions is that there are a lot of uncertainties in the solutions. We cannot guarantee our solution is good enough for making decisions. The technique of heuristic optimization is formulated in the thesis. Swedish population redistribution is examined by a spatio-temporal covariance model. A descriptive analysis is not always enough to describe the moving effects from the neighbouring population. A correlation or a covariance analysis is more explicit to show the tendencies. Similarly, the optimization technique of the parameter estimation is required and is executed in the frame of statistical modeling.
Resumo:
The p-median model is used to locate P facilities to serve a geographically distributed population. Conventionally, it is assumed that the population always travels to the nearest facility. Drezner and Drezner (2006, 2007) provide three arguments on why this assumption might be incorrect, and they introduce the extended the gravity p-median model to relax the assumption. We favour the gravity p-median model, but we note that in an applied setting, Drezner and Drezner’s arguments are incomplete. In this communication, we point at the existence of a fourth compelling argument for the gravity p-median model.
Resumo:
This study covers a period when society changed from a pre-industrial agricultural society to a post-industrial service-producing society. Parallel with this social transformation, major population changes took place. In this study, we analyse how local population changes are affected by neighbouring populations. To do so we use the last 200 years of local population change that redistributed population in Sweden. We use literature to identify several different processes and spatial dependencies in the redistribution between a parish and its surrounding parishes. The analysis is based on a unique unchanged historical parish division, and we use an index of local spatial correlation to describe different kinds of spatial dependencies that have influenced the redistribution of the population. To control inherent time dependencies, we introduce a non-separable spatial temporal correlation model into the analysis of population redistribution. Hereby, several different spatial dependencies can be observed simultaneously over time. The main conclusions are that while local population changes have been highly dependent on the neighbouring populations in the 19th century, this spatial dependence have become insignificant already when two parishes is separated by 5 kilometres in the late 20th century. Another conclusion is that the time dependency in the population change is higher when the population redistribution is weak, as it currently is and as it was during the 19th century until the start of industrial revolution.
Resumo:
Background. The pharmacokinetics and pharmacodynamics of lumefantrine, a component of the most widely used treatment for malaria, artemether-lumefantrine, has not been adequately characterized in young children. Methods. Capillary whole-blood lumefantrine concentration and treatment outcomes were determined in 105 Ugandan children, ages 6 months to 2 years, who were treated for 249 episodes of Plasmodium falciparum malaria with artemether-lumefantrine. Results. Population pharmacokinetics for lumefantrine used a 2-compartment open model with first-order absorption. Age had a significant positive correlation with bioavailability in a model that included allometric scaling. Children not receiving trimethoprim-sulfamethoxazole with capillary whole blood concentrations <200 ng/mL had a 3-fold higher hazard of 28-day recurrent parasitemia, compared with those with concentrations >200 ng/mL (P =. 0007). However, for children receiving trimethoprim-sulfamethoxazole, the risk of recurrent parasitemia did not differ significantly on the basis of this threshold. Day 3 concentrations were a stronger predictor of 28-day recurrence than day 7 concentrations. Conclusions. We demonstrate that age, in addition to weight, is a determinant of lumefantrine exposure, and in the absence of trimethoprim-sulfamethoxazole, lumefantrine exposure is a determinant of recurrent parasitemia. Exposure levels in children aged 6 months to 2 years was generally lower than levels published for older children and adults. Further refinement of artemether-lumefantrine dosing to improve exposure in infants and very young children may be warranted. © 2016 The Author.