2 resultados para Polynomial distributed lag models
em Dalarna University College Electronic Archive
Resumo:
During the last decade, the Internet usage has been growing at an enormous rate which has beenaccompanied by the developments of network applications (e.g., video conference, audio/videostreaming, E-learning, E-Commerce and real-time applications) and allows several types ofinformation including data, voice, picture and media streaming. While end-users are demandingvery high quality of service (QoS) from their service providers, network undergoes a complex trafficwhich leads the transmission bottlenecks. Considerable effort has been made to study thecharacteristics and the behavior of the Internet. Simulation modeling of computer networkcongestion is a profitable and effective technique which fulfills the requirements to evaluate theperformance and QoS of networks. To simulate a single congested link, simulation is run with asingle load generator while for a larger simulation with complex traffic, where the nodes are spreadacross different geographical locations generating distributed artificial loads is indispensable. Onesolution is to elaborate a load generation system based on master/slave architecture.
Resumo:
Background: The sensitivity to microenvironmental changes varies among animals and may be under genetic control. It is essential to take this element into account when aiming at breeding robust farm animals. Here, linear mixed models with genetic effects in the residual variance part of the model can be used. Such models have previously been fitted using EM and MCMC algorithms. Results: We propose the use of double hierarchical generalized linear models (DHGLM), where the squared residuals are assumed to be gamma distributed and the residual variance is fitted using a generalized linear model. The algorithm iterates between two sets of mixed model equations, one on the level of observations and one on the level of variances. The method was validated using simulations and also by re-analyzing a data set on pig litter size that was previously analyzed using a Bayesian approach. The pig litter size data contained 10,060 records from 4,149 sows. The DHGLM was implemented using the ASReml software and the algorithm converged within three minutes on a Linux server. The estimates were similar to those previously obtained using Bayesian methodology, especially the variance components in the residual variance part of the model. Conclusions: We have shown that variance components in the residual variance part of a linear mixed model can be estimated using a DHGLM approach. The method enables analyses of animal models with large numbers of observations. An important future development of the DHGLM methodology is to include the genetic correlation between the random effects in the mean and residual variance parts of the model as a parameter of the DHGLM.