2 resultados para Plant products industry
em Dalarna University College Electronic Archive
Resumo:
The use of ceramic material as refractories in the manufacturing industry is a common practice worldwide. During usage, for example in the production of steel, these materials do experience severe working conditions including high temperatures, low pressures and corrosive environments. This results in lowered service lives and high consumptions of these materials. This, in turn, affects the productivity of the whole steel plant and thereby the cost. In order to investigate how the service life can be improved, studies have been carried out for refractories used in the inner lining of the steel ladles. More specifically, from the slag zone, where the corrosion is most severe. By combining thermodynamic simulations, plant trails and post-mortem studies of the refractories after service, vital information about the behaviour of the slagline refractories during steel refining and the causes of the accelerated wear in this ladle area has been achieved. The results from these studies show that the wear of the slagline refractories of the ladle is initiated at the preheating station, through reduction-oxidation reactions. The degree of the decarburization process is mostly dependent on the preheating fuel or the environment. For refractories without antioxidants, refractory decarburization is slower when coal gas is used in ladle preheating than when a mixture of oil and air is used. In addition, ladle preheating of the refractories without antioxidants leads to direct wear of the slagline refractories. This is due to the total loss of the matrix strength, which results in a sand-like product. Thermal chemical changes that take place in the slagline refractories are due to the MgO-C reaction as well as the formation of liquid phases from impurity oxides. In addition, the decrease in the system pressure during steel refining makes the MgO-C reaction take place at the steel refining temperatures. This reduces the refractory’s resistance to corrosion. This is a serious problem for both the magnesia-carbon and dolomite-carbon refractories. The studies of the reactions between the slagline refractories and the different slag compositions showed that slags rich in iron oxide lead mostly to the oxidation of carbon/graphite in the carbon-containing refractories. This leads to an increased porosity and wettability and therefore an enhanced penetration of slag into the refractory structure. If the slag contains high contents of alumina and or silica (such as the steel refining slag), reactions between the slag components and the dolomite-carbon refractory are promoted. This leads to the formation of low-temperature melting phases such as calcium-aluminates and silicates. The state of these reaction products during steel refining leads to an accelerated wear of the dolomite-carbon refractory. The main products of the reactions between the magnesia-carbon refractory and the steel refining slag are MgAl2O4 spinels, and calcium-aluminates, and silicates. Due to the good refractory properties of MgAl2O4 spinels, the slag corrosion resistance of the magnesiacarbon refractory is promoted.
Resumo:
Wholesale trade has an intermediate position between manufacturing and retail in the distributional channel. In modern economies, consumers buy few, if any, products directly from manufacture or producer. Instead, it is a wholesaler, who is in direct contact with producers, buying goods in larger quantities and selling them in smaller quantities to retailers. Traditionally, the main function of a wholesaler has been to push goods along the distributional channel from producer to retailer, or other nonend user. However, the function of wholesalers usually goes beyond the process of the physical distribution of goods. Wholesalers also arrange storage, perform market analyses, promote trade or provide technical support to consumers (Riemers 1998). The existence of wholesalers (and other intermediaries) in the distributional channel is based on the effective and efficient performance of distribution services, that are needed by producers and other members of the supply chain. Producers usually do not enjoy the economies of scale that they have in production, when it comes to providing distributional services (Rosenbloom 2007) and this creates a space for wholesalers or other intermediaries. Even though recent developments in the distributional channel indicate that traditional wholesaling activities now also compete with other supply chain organizations, wholesaling still remains an important activity in many economies (Quinn and Sparks, 2007). In 2010, the Swedish wholesale trade sector consisted of approximately 46.000 firms and generated an annual turnover of 1 300 billion SEK (Företagsstatistiken, Statistics Sweden). In terms of turnover, wholesaling accounts for 20% of the gross domestic product and is thereby the third largest industry. This is behind manufacturing and a composite group of firms in other sectors of the service industry but ahead of retailing. This indicates that the wholesale trade sector is an important part of the Swedish economy. The position of wholesaling is further reinforced when measuring productivity growth. Measured in terms of value added per employee, wholesaling experienced the largest productivity growth of all industries in the Swedish economy during the years 2000 through 2010. The fact that wholesale trade is one of the important parts of a modern economy, and the positive development of the Swedish wholesale trade sector in recent decades, leads to several questions related to industry dynamics. The three topics that will be examined in this thesis are firm entry, firm relocation and firm growth. The main question to be answered by this thesis is what factors influence new firm formation, firm relocation and firm growth in the Swedish wholesale trade sector?