6 resultados para Passive Building Technologies

em Dalarna University College Electronic Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A ventilation radiator is a combined ventilation and heat emission unit currently of interest due to its potential for increasing energy efficiency in exhaust ventilated buildings with warm water heating. This paper presents results of performance tests of several ventilation radiator models conducted under controlled laboratory conditions.   The purpose of the study was to validate results achieved by Computational Fluid Dynamics (CFD) in an earlier study and indentify possible improvements in the performance of such systems. The main focus was on heat transfer from internal convection fins, but comfort and health aspects related to ventilation rates and air temperatures were also considered.   The general results from the CFD simulations were confirmed; the heat output of ventilation radiators may be improved by at least 20 % without sacrificing ventilation efficiency or thermal comfort.   Improved thermal efficiency of ventilation radiators allows a lower supply water temperature and energy savings both for heating up and distribution of warm water in heat pumps or district heating systems. A secondary benefit is that a high ventilation rate can be maintained all year around without risk for cold draught.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The need for heating and cooling in buildings constitutes a considerable part of the total energy use in a country and reducing this need is of outmost importance in order to reach national and international goals for reducing energy use and emissions. One important way of reaching these goals is to increase the proportion of renewable energy used for heating and cooling of buildings. Perhaps the largest obstacle with this is the often occurring mismatch between the availability of renewable energy and the need for heating or cooling, hindering this energy to be used directly. This is one of the problems that can be solved by using thermal energy storage (TES) in order to save the heat or cold from when it is available to when it is needed. This thesis is focusing on the combination of TES techniques and buildings to achieve increased energy efficiency for heating and cooling. Various techniques used for TES as well as the combination of TES in buildings have been investigated and summarized through an extensive literature review. A survey of the Swedish building stock was also performed in order to define building types common in Sweden. Within the scope of this thesis, the survey resulted in the selection of three building types, two single family houses and one office building, out of which the two residential buildings were used in a simulation case study of passive TES with increased thermal mass (both sensible and latent). The second case study presented in the thesis is an evaluation of an existing seasonal borehole storage of solar heat for a residential community. In this case, real measurement data was used in the evaluation and in comparisons with earlier evaluations. The literature reviews showed that using TES opens up potential for reduced energy demand and reduced peak heating and cooling loads as well as possibilities for an increased share of renewable energy to cover the energy demand. By using passive storage through increased thermal mass of a building it is also possible to reduce variations in the indoor temperature and especially reduce excess temperatures during warm periods, which could result in avoiding active cooling in a building that would otherwise need it. The analysis of the combination of TES and building types confirmed that TES has a significant potential for increased energy efficiency in buildings but also highlighted the fact that there is still much research required before some of the technologies can become commercially available. In the simulation case study it was concluded that only a small reduction in heating demand is possible with increased thermal mass, but that the time with indoor temperatures above 24 °C can be reduced by up to 20%. The case study of the borehole storage system showed that although the storage system worked as planned, heat losses in the rest of the system as well as some problems with the system operation resulted in a lower solar fraction than projected. The work presented within this thesis has shown that TES is already used successfully for many building applications (e.g. domestic hot water stores and water tanks for storing solar heat) but that there still is much potential in further use of TES. There are, however, barriers such as a need for more research for some storage technologies as well as storage materials, especially phase change material storage and thermochemical storage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a first step in assessing the potential of thermal energy storage in Swedish buildings, the current situation of the Swedish building stock and different storage methods are discussed in this paper. Overall, many buildings are from the 1960’s or earlier having a relatively high energy demand, creating opportunities for large energy savings. The major means of heating are electricity for detached houses and district heating for multi dwelling houses and premises. Cooling needs are relatively low but steadily increasing, emphasizing the need to consider energy storage for both heat and cold. The thermal mass of a building is important for passive storage of thermal energy but this has not been considered much when constructing buildings in Sweden. Instead, common ways of storing thermal energy in Swedish buildings today is in water storage tanks or in the ground using boreholes, while latent thermal energy storage is still very uncommon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research was carried out by studying possible renovation of a two-storey detached multifamily building by using passive solar design options in a cold climate in Borlänge, Sweden where the heating Degree Days are 4451 (base 20°C). Borlänge`s housing company, Tunabyggen, plans to renovate the project house located inthe multicultural district, Jakobsgårdarna. The goal of the thesis was to suggest a redesign of the current building, decrease the heating energy use, by applying passive solar design and control strategies, in a most reasonable way. In addition ensure a better thermal comfort for the tenants in the dwellings. Literatures have been studied, from which can be inferred that passive design should be abasic design consideration for all housing constructions, because it has advantages to ensure thermal comfort, and reduce the energy use. In addition further savings can be achieved applying different types of control strategies, from which the house will be more personalized, and better adapted to the user’s needs.The proposed method is based on simulations by using TRNSYS software. First a proper building model was set up, which represents the current state of the project building. Then the thermal insulation and the windows were upgraded, based on today's building regulations. The developments of the passive solar options were accomplished in two steps. First of all the relevant basic passive design elements were considered, then those advantages were compared to the advantages of applying new conventional thermostat, and shading control strategies.The results show that there is significant potential with the different types of passive solar design; their usage depends primarily on the location of the site as well as the orientation of the project building. Applying the control strategies, such as thermostat, and shading control, along the thermal insulation upgrade, may lead to significant energy savings (around 40 %), by comparison to the reference building without any upgrade.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this project, Stora Enso’s newly developed building system has been further developed to allow building to the Swedish passive house standard for the Swedish climate. The building system is based on a building framework of CLT (Cross laminated timber) boards. The concept has been tested on a small test building. The experience gained from this test building has also been used for planning a larger building (two storeys with the option of a third storey) with passive house standard with this building system. The main conclusions from the project are:  It is possible to build airtight buildings with this technique without using traditional vapour barriers. Initial measurements show that this can be done without reaching critical humidity levels in the walls and roof, at least where wood fibre insulation is used, as this has a greater capacity for storing and evening out the moisture than mineral wool. However, the test building has so far not been exposed to internal generation of moisture (added moisture from showers, food preparation etc.). This needs to be investigated and this will be done during the winter 2013-14.  A new fixing method for doors and windows has been tested without traditional fibre filling between them and the CLT panel. The door or window is pressed directly on to the CLT panel instead, with an expandable sealing strip between them. This has been proved to be successful.  The air tightness between the CLT panels is achieved with expandable sealing strips between the panels. The position of the sealing strips is important, both for the air tightness itself and to allow rational assembly.  Recurrent air tightness measurements show that the air tightness decreased somewhat during the first six months, but not to such an extent that the passive house criteria were not fulfilled. The reason for the decreased air tightness is not clear, but can be due to small movements in the CLT construction and also to the sealing strips being affected by changing outdoor temperatures.  Long term measurements (at least two years) have to be carried out before more reliable conclusions can be drawn regarding the long term effect of the construction on air tightness and humidity in the walls.  An economic analysis comparing using a concrete frame or the studied CLT frame for a three storey building shows that it is probably more expensive to build with CLT. For buildings higher than three floors, the CLT frame has economic advantages, mainly because of the shorter building time compared to using concrete for the frame. In this analysis, no considerations have been taken to differences in the influence on the environment or the global climate between the two construction methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies have shown that the optical properties of building exterior surfaces are important in terms of energy use and thermal comfort. While the majority of the studies are related to exterior surfaces, the radiation properties of interior surfaces are less thoroughly investigated. Development in the coil-coating industries has now made it possible to allocate different optical properties for both exterior and interior surfaces of steel-clad buildings. The aim of this thesis is to investigate the influence of surface radiation properties with the focus on the thermal emittance of the interior surfaces, the modeling approaches and their consequences in the context of the building energy performance and indoor thermal environment. The study consists of both numerical and experimental investigations. The experimental investigations include parallel field measurements on three similar test cabins with different interior and exterior surface radiation properties in Borlänge, Sweden, and two ice rink arenas with normal and low emissive ceiling in Luleå, Sweden. The numerical methods include comparative simulations by the use of dynamic heat flux models, Building Energy Simulation (BES), Computational Fluid Dynamics (CFD) and a coupled model for BES and CFD. Several parametric studies and thermal performance analyses were carried out in combination with the different numerical methods. The parallel field measurements on the test cabins include the air, surface and radiation temperatures and energy use during passive and active (heating and cooling) measurements. Both measurement and comparative simulation results indicate an improvement in the indoor thermal environment when the interior surfaces have low emittance. In the ice rink arenas, surface and radiation temperature measurements indicate a considerable reduction in the ceiling-to-ice radiation by the use of low emittance surfaces, in agreement with a ceiling-toice radiation model using schematic dynamic heat flux calculations. The measurements in the test cabins indicate that the use of low emittance surfaces can increase the vertical indoor air temperature gradients depending on the time of day and outdoor conditions. This is in agreement with the transient CFD simulations having the boundary condition assigned on the exterior surfaces. The sensitivity analyses have been performed under different outdoor conditions and surface thermal radiation properties. The spatially resolved simulations indicate an increase in the air and surface temperature gradients by the use of low emittance coatings. This can allow for lower air temperature at the occupied zone during the summer. The combined effect of interior and exterior reflective coatings in terms of energy use has been investigated by the use of building energy simulation for different climates and internal heat loads. The results indicate possible energy savings by the smart choice of optical properties on interior and exterior surfaces of the building. Overall, it is concluded that the interior reflective coatings can contribute to building energy savings and improvement of the indoor thermal environment. This can be numerically investigated by the choice of appropriate models with respect to the level of detail and computational load. This thesis includes comparative simulations at different levels of detail.