8 resultados para Parabolic Subgroup
em Dalarna University College Electronic Archive
Resumo:
Two different concentrating mirrors have been constructed that resemble parabolic dish reflectors. Both mirrors are made of slightly curved strips of flat, bendable material. The strips of the most simplified mirror have only large-radius circles and straight lines as boundaries. The necessary equations for making the mirrors have been derived. Also a simple way to make a stiff, lightweight frame and support for the mirror strips has been developed. Models of the mirrors have been built and successfully used for cooking and baking.This report is an extended version of a paper to be published in Solar Energy that contains complete derivations of all mirror design equations.
Resumo:
This Thesis project is a part of the all-round automation of production of concentrating solar PV/T systems Absolicon X10. ABSOLICON Solar Concentrator AB has been invented and started production of the prospective solar concentrated system Absolicon X10. The aims of this Thesis project are designing, assembling, calibrating and putting in operation the automatic measurement system intended to evaluate the shape of concentrating parabolic reflectors.On the basis of the requirements of the company administration and needs of real production process the operation conditions for the Laser testing rig were formulated. The basic concept to use laser radiation was defined.At the first step, the complex design of the whole system was made and division on the parts was defined. After the preliminary conducted simulations the function and operation conditions of the all parts were formulated.At the next steps, the detailed design of all the parts was conducted. Most components were ordered from respective companies. Some of the mechanical components were made in the workshop of the company. All parts of the Laser-testing rig were assembled and tested. Software part, which controls the Laser-testing rig work, was created on the LabVIEW basis. To tune and test software part the special simulator was designed and assembled.When all parts were assembled in the complete system, the Laser-testing rig was tested, calibrated and tuned.In the workshop of Absolicon AB, the trial measurements were conducted and Laser-testing rig was installed in the production line at the plant in Soleftea.
Resumo:
This Thesis project is a part of the research conducted in Solar industry. ABSOLICON Solar Concentrator AB has invented and started production of the prospective solar concentrated system Absolicon X10. The aims of this Thesis project are designing, assembling, calibrating and putting in operation the automatic measurement system intended to evaluate distribution of density of solar radiation in the focal line of the concentrated parabolic reflectors and to measure radiation from the artificial source of light being a calibration-testing tool.On the basis of the requirements of the company’s administration and needs of designing the concentrated reflectors the operation conditions for the Sun-Walker were formulated. As the first step, the complex design of the whole system was made and division on the parts was specified. After the preliminary conducted simulation of the functions and operation conditions of the all parts were formulated.As the next steps, the detailed design of all the parts was made. Most components were ordered from respective companies. Some of the mechanical components were made in the workshop of the company. All parts of the Sun-Walker were assembled and tested. The software part, which controls the Sun-Walker work and conducts measurements of solar irradiation, was created on the LabVIEW basis. To tune and test the software part, the special simulator was designed and assembled.When all parts were assembled in the complete system, the Sun-Walker was tested, calibrated and tuned.
Resumo:
The purpose of the work is to develop a cost effective semistationary CPC concentrator for a string PV-module. A novel method of using annual irradiation distribution diagram projected in a north-south vertical plane is developed. This method allows us easily to determine the optimum acceptance angle of the concentrator and the required number of annual tilts. Concentration ranges of 2-5x are investigated with corresponding acceptance angles between 5 and 15°. The concentrator should be tilted 2-6 times per year. Experiments has been performed on a string module of 10 cells connected in a series and equipped with a compound parabolic concentrator with C = 3.3X. Measurement show that the output will increase with a factor of 2-2.5 for the concentrator module, compared to a reference module without concentrator. If very cheap aluminium reflectors are used the costs for the PV-module can be decreased nearly by a factor of two.
Resumo:
The diffusion of Concentrating Solar Power Systems (CSP) systems is currently taking place at a much slower pace than photovoltaic (PV) power systems. This is mainly because of the higher present cost of the solar thermal power plants, but also for the time that is needed in order to build them. Though economic attractiveness of different Concentrating technologies varies, still PV power dominates the market. The price of CSP is expected to drop significantly in the near future and wide spread installation of them will follow. The main aim of this project is the creation of different relevant case studies on solar thermal power generation and a comparison betwwen them. The purpose of this detailed comparison is the techno-economic appraisal of a number of CSP systems and the understanding of their behaviour under various boundary conditions. The CSP technologies which will be examined are the Parabolic Trough, the Molten Salt Power Tower, the Linear Fresnel Mirrors and the Dish Stirling. These systems will be appropriatly sized and simulated. All of the simulations aim in the optimization of the particular system. This includes two main issues. The first is the achievement of the lowest possible levelized cost of electricity and the second is the maximization of the annual energy output (kWh). The project also aims in the specification of these factors which affect more the results and more specifically, in what they contribute to the cost reduction or the power generation. Also, photovoltaic systems will be simulated under same boundary conditions to facolitate a comparison between the PV and the CSP systems. Last but not leats, there will be a determination of the system which performs better in each case study.
Resumo:
To identify the relevant product markets for Swedish pharmaceuticals, a spatial econometrics approach is employed. First, we calculate Moran’s Is for different market definitions and then we use a spatial Durbin model to determine the effect of price changes on quantity sold off own and competing products. As expected, the results show that competition is strongest between close substitutes; however, the relevant product markets for Swedish pharmaceuticals extend beyond close substitutes down to products included in the same class on the four-digit level of the Anatomic Therapeutic Chemical system as defined by the World Health Organization. The spatial regression model further indicates that increases in the price of a product significantly lower the quantity sold of that product and in the same time increase the quantity sold of competing products. For close substitutes (products belonging to the same class on the seven-digit level of the Anatomic Therapeutic Chemical system), as well as for products that, without being close substitutes, belong to the same therapeutic/pharmacological/chemical subgroup (the same class on the five-digit level of the Anatomic Therapeutic Chemical system), a significant change towards increased competition is also visible after 1 July 2009 when the latest policy changes with regards to pharmaceuticals have been implemented in Sweden.
Resumo:
The aim of this master thesis is an investigation of the thermal performance of a thermal compound parabolic concentrating (CPC) collector from Solarus. The collector consists of two troughs with absorbers which are coated with different types of paint with unknown properties. The lower and upper trough of the collector have been tested individually. In order to accomplish the performance of the two collectors, a thorough literature study in the fields of CPC technology, various test methods, test standards for solar thermal collectors as well as the latest articles relating on the subject were carried out. In addition, the set‐up of the thermal test rig was part of the thesis as well. The thermal performance was tested according to the steady state test method as described in the European standard 12975‐2. Furthermore, the thermal performance of a conventional flat plate collector was carried out for verification of the test method. The CPC‐Thermal collector from Solarus was tested in 2013 and the results showed four times higher values of the heat loss coefficient UL (8.4 W/m²K) than what has been reported for a commercial collector from Solarus. This value was assumed to be too large and it was assumed that the large value was a result of the test method used that time. Therefore, another aim was the comparison of the results achieved in this work with the results from the tests performed in 2013. The results of the thermal performance showed that the optical efficiency of the lower trough of the CPC‐T collector is 77±5% and the corresponding heat loss coefficient UL 4.84±0.20 W/m²K. The upper trough achieved an optical efficiency of 75±6 % and a heat loss coefficient UL of 6.45±0.27 W/m²K. The results of the heat loss coefficients are valid for temperature intervals between 20°C and 80°C. The different absorber paintings have a significant impact on the results, the lower trough performs overall better. The results achieved in this thesis show lower heat loss coefficients UL and higher optical efficiencies compared to the results from 2013.
Resumo:
Introduction: Based on randomised controlled trials, evidence exists that early supported discharge (ESD) from the hospital with continued rehabilitation at home has beneficial effects after stroke; however, the effects of ESD service in regular clinical practice have not been investigated. The purpose of the current study was to compare ESD service with conventional rehabilitation in terms of patient outcomes, caregiver burden at 3 and 12 months and the use and costs of healthcare during the first year after stroke. Material and methods: This study was a subgroup analysis of a longitudinal observational study of patients who received care in the stroke unit at Karolinska University Hospital in Sweden. Patients who met the inclusion criteria for ESD in previous experimental studies were included. The patients were referred to available rehabilitation services at discharge, and comparisons between those who received ESD service (the ESD group, n = 40) and those who received conventional rehabilitation (the NoESD group, n = 110) were performed with regard to independence in activities of daily living (ADL), the frequency of social activities, life satisfaction, and caregiver burden and the use and costs of healthcare during the first year after stroke. Results: At 3 and 12 months, no differences were observed with regard to patient outcomes; however, ESD was associated with a lower caregiver burden (p = 0.01) at 12 months. The initial length of stay (LOS) at the hospital was 8 days for the ESD group and 15 days for the NoESD group (p = 0.02). The median number of outpatient rehabilitation contacts was 20.5 for the ESD group (81% constituting ESD service) and 3 for the NoESD group (p<0.001). There was no difference between the groups with regard to overall healthcare costs. Conclusions: ESD service in usual clinical practice renders similar health benefits as conventional rehabilitation but a different pattern of resource use and with released capacity in acute stroke care.