4 resultados para PV maximum power point (MPP) tracker (MPPT) algorithms

em Dalarna University College Electronic Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years the number of bicycles with e-motors has been increased steadily. Within the pedelec – bikes where an e-motor supports the pedaling – a special group of transportation bikes has developed. These bikes have storage boxes in addition to the basic parts of a bike. Due to the space available on top of those boxes it is possible to install a PV system to generate electricity which could be used to recharge the battery of the pedelec. Such a system would lead to grid independent charging of the battery and to the possibility of an increased range of motor support. The feasibility of such a PV system is investigated for a three wheeled pedelec delivered by the company BABBOE NORDIC.The measured data of the electricity generation of this mobile system is compared to the possible electricity generation of a stationary system.To measure the consumption of the pedelec different tracks are covered, and the energy which is necessary to recharge the bike battery is measured using an energy logger. This recharge energy is used as an indirect measure of the electricity consumption. A PV prototype system is installed on the bike. It is a simple PV stand alone system consisting of PV panel, charge controller with MPP tracker and a solar battery. This system has the task to generate as much electricity as possible. The produced PV current and voltage aremeasured and documented using a data logger. Afterwards the average PV power is calculated. To compare the produced electricity of the on-bike system to that of a stationary system, the irradiance on the latter is measured simultaneously. Due to partial shadings on the on-bike PV panel, which are caused by the driver and some other bike parts, the average power output during riding the bike is very low. It is too low to support the motor directly. In case of a similar installation as the PV prototype system and the intention always to park the bike on a sunny spot an on-bike system could generate electricity to at least partly recharge a bike battery during one day. The stationary PV system using the same PV panel could have produced between 1.25 and 8.1 times as much as the on-bike PV system. Even though the investigation is done for a very specific case it can be concluded that anon-bike PV system, using similar components as in the investigation, is not feasible to recharge the battery of a pedelec in an appropriate manner. The biggest barrier is that partial shadings on the PV panel, which can be hardly avoided during operation and parking, result in a significant reduction of generated electricity. Also the installation of the on-bike PV system would lead to increased weight of the whole bike and the need for space which is reducing the storage capacity. To use solar energy for recharging a bike battery an indirect way is giving better results. In this case a stationary PV stand alone system is used which is located in a sunny spot without shadings and adjusted to use the maximum available solar energy. The battery of the bike is charged using the corresponding charger and an inverter which provides AC power using the captured solar energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis the solar part of a large grid-connected photovoltaic system design has been done. The main purpose was to size and optimize the system and to present figures helping to evaluate the prospective project rationality, which can potentially be constructed on a contaminated area in Falun. The methodology consisted in PV market study and component selection, site analysis and defining suitable area for solar installation; and system configuration optimization based on PVsyst simulations and Levelized Cost of Energy calculations. The procedure was mainly divided on two parts, preliminary and detailed sizing. In the first part the objective was complex, which included the investigation of the most profitable component combination and system optimization due to tilt and row distance. It was done by simulating systems with different components and orientations, which were sized for the same 100kW inverter in order to make a fair comparison. For each simulated result a simplified LCOE calculation procedure was applied. The main results of this part show that with the price of 0.43 €/Wp thin-film modules were the most cost effective solution for the case with a great advantage over crystalline type in terms of financial attractiveness. From the results of the preliminary study it was possible to select the optimal system configuration, which was used in the detailed sizing as a starting point. In this part the PVsyst simulations were run, which included full scale system design considering near shadings created by factory buildings. Additionally, more complex procedure of LCOE calculation has been used here considered insurances, maintenance, time value of money and possible cost reduction due to the system size. Two system options were proposed in final results; both cover the same area of 66000 m2. The first one represents an ordinary South faced design with 1.1 MW nominal power, which was optimized for the highest performance. According to PVsyst simulations, this system should produce 1108 MWh/year with the initial investment of 835,000 € and 0.056 €/kWh LCOE. The second option has an alternative East-West orientation, which allows to cover 80% of occupied ground and consequently have 6.6 MW PV nominal power. The system produces 5388 MWh/year costs about 4500,000 € and delivers electricity with the same price of 0.056 €/kWh. Even though the EW solution has 20% lower specific energy production, it benefits mainly from lower relative costs for inverters, mounting and annual maintenance expenses. After analyzing the performance results, among the two alternatives none of the systems showed a clear superiority so there was no optimal system proposed. Both, South and East-West solutions have own advantages and disadvantages in terms of energy production profile, configuration, installation and maintenance. Furthermore, the uncertainty due to cost figures assumptions restricted the results veracity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A tool for standardized calculation of solar collector performance has been developed in cooperation between SP Technical Research Institute of Sweden, DTU Denmark and SERC Dalarna University. The tool is designed to calculate the annual performance of solar collectors at representative locations in Europe. The collector parameters used as input in the tool are compiled from tests according to EN12975, without any intermediate conversions. The main target group for this tool is test institutes and certification bodies that are intended to use it for conversion of collector model parameters (derived from performance tests) into a more user friendly quantity: the annual energy output. The energy output presented in the tool is expressed as kWh per collector module. A simplified treatment of performance for PVT collectors is added based on the assumption that the thermal part of the PVT collector can be tested and modeled as a thermal collector, when the PV electric part is active with an MPP tracker in operation. The thermal collector parameters from this operation mode are used for the PVT calculations. © 2012 The Authors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this paper is to point out benefits as well as disadvantages associated with the use of locally available, not necessarily standardized, components in stand-alone electrical power systems at rural locations. Advantages and challenges arising when the direct involvement in design, construction and maintenance of the power system is reserved to people based in the area of implementation are discussed. The presented research is centered around one particular PV-diesel hybrid system in Tanzania; a case study in which technical and social aspects related to the particular power system are studied.