2 resultados para PESTICIDE EXPOSURE
em Dalarna University College Electronic Archive
Resumo:
Video exposure monitoring (VEM) is a group of methods used for occupational hygiene studies. The method is based on a combined use of video recordings with measurements taken with real-time monitoring instruments. A commonly used name for VEM is PIMEX. Since PIMEX initially was invented in the mid 1980’s have the method been implemented and developed in a number of countries. With the aim to give an updated picture of how VEM methods are used and to investigate needs for further development have a number of workshops been organised in Finland, UK, the Netherlands, Germany and Austria. Field studies have also been made with the aim to study to what extent the PIMEX method can improve workers motivation to actively take part in actions aimed at workplace improvements.The results from the workshops illustrates clearly that there is an impressive amount of experiences and ideas for the use of VEM within the network of the groups participating in the workshops. The sharing of these experiences between the groups, as well as dissemination of it to wider groups is, however, limited. The field studies made together with a number of welders indicate that their motivation to take part in workplace improvements is improved after the PIMEX intervention. The results are however not totally conclusive and further studies focusing on motivation are called for.It is recommended that strategies for VEM, for interventions in single workplaces, as well as for exposure categorisation and production of training material are further developed. It is also recommended to conduct a research project with the intention of evaluating the effects of the use of VEM as well as to disseminate knowledge about the potential of VEM to occupational hygiene experts and others who may benefit from its use.
Resumo:
Background: The insecticides dichlorvos, paradichlorobenzene and naphthalene have been commonly used to eradicate pest insects from natural history collections. However, it is not known how these chemicals affect the DNA of the specimens in the collections. We thus tested the effect of dichlorvos, paradichlorobenzene and naphthalene on DNA of insects (Musca domestica) by extracting and amplifying DNA from specimens exposed to insecticides in two different concentrations over increasing time intervals. Results: The results clearly show that dichlorvos impedes both extraction and amplification of mitochondrial and nuclear DNA after relatively short time, whereas paradichlorobenzene and naphthalene do not. Conclusion: Collections treated with paradichlorobenzene and naphthalene, are better preserved concerning DNA, than those treated with dichlorvos. Non toxic pest control methods should, however, be preferred due to physical damage of specimens and putative health risks by chemicals.