1 resultado para Non-leaving face property
em Dalarna University College Electronic Archive
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Repository Napier (1)
- Aberdeen University (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (1)
- Academic Research Repository at Institute of Developing Economies (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (8)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (1)
- Aston University Research Archive (17)
- B-Digital - Universidade Fernando Pessoa - Portugal (2)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (12)
- Brock University, Canada (5)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (4)
- CentAUR: Central Archive University of Reading - UK (27)
- Central European University - Research Support Scheme (1)
- Centro Hospitalar do Porto (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (13)
- Cochin University of Science & Technology (CUSAT), India (1)
- Coffee Science - Universidade Federal de Lavras (10)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (3)
- Digital Peer Publishing (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (2)
- Ecology and Society (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (26)
- Helda - Digital Repository of University of Helsinki (3)
- Indian Institute of Science - Bangalore - Índia (14)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (1)
- Instituto Superior de Psicologia Aplicada - Lisboa (4)
- Massachusetts Institute of Technology (2)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- National Center for Biotechnology Information - NCBI (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Portal de Revistas Científicas Complutenses - Espanha (15)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (13)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (11)
- Queensland University of Technology - ePrints Archive (545)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- Repositorio Academico Digital UANL (1)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (7)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (14)
- Research Open Access Repository of the University of East London. (1)
- SAPIENTIA - Universidade do Algarve - Portugal (3)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (6)
- School of Medicine, Washington University, United States (1)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (9)
- Universidade Complutense de Madrid (2)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universidade Metodista de São Paulo (1)
- Universitat de Girona, Spain (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal (4)
- Université de Montréal, Canada (45)
- Université Laval Mémoires et thèses électroniques (2)
- University of Connecticut - USA (1)
- University of Queensland eSpace - Australia (4)
- University of Washington (2)
- USA Library of Congress (1)
- WestminsterResearch - UK (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
The objective of this thesis work, is to propose an algorithm to detect the faces in a digital image with complex background. A lot of work has already been done in the area of face detection, but drawback of some face detection algorithms is the lack of ability to detect faces with closed eyes and open mouth. Thus facial features form an important basis for detection. The current thesis work focuses on detection of faces based on facial objects. The procedure is composed of three different phases: segmentation phase, filtering phase and localization phase. In segmentation phase, the algorithm utilizes color segmentation to isolate human skin color based on its chrominance properties. In filtering phase, Minkowski addition based object removal (Morphological operations) has been used to remove the non-skin regions. In the last phase, Image Processing and Computer Vision methods have been used to find the existence of facial components in the skin regions.This method is effective on detecting a face region with closed eyes, open mouth and a half profile face. The experiment’s results demonstrated that the detection accuracy is around 85.4% and the detection speed is faster when compared to neural network method and other techniques.