1 resultado para Non-Gaussian dynamic models
em Dalarna University College Electronic Archive
Filtro por publicador
- Repository Napier (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (18)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (6)
- Aquatic Commons (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (12)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (5)
- Aston University Research Archive (54)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital - Universidad Icesi - Colombia (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (14)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (8)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (5)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (18)
- Boston University Digital Common (2)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (8)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- CaltechTHESIS (8)
- Cambridge University Engineering Department Publications Database (101)
- CentAUR: Central Archive University of Reading - UK (53)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (13)
- Cochin University of Science & Technology (CUSAT), India (9)
- Collection Of Biostatistics Research Archive (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (4)
- Digital Commons at Florida International University (4)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (2)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (10)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (3)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (1)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (14)
- Indian Institute of Science - Bangalore - Índia (87)
- Instituto Politécnico do Porto, Portugal (3)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (5)
- Memorial University Research Repository (2)
- National Center for Biotechnology Information - NCBI (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- Publishing Network for Geoscientific & Environmental Data (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (62)
- Queensland University of Technology - ePrints Archive (89)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (19)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade de Brasília (2)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositorio Institucional de la Universidad de La Laguna (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (57)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (12)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (36)
- Universidade Federal do Pará (4)
- Universidade Federal do Rio Grande do Norte (UFRN) (6)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (1)
- Université de Montréal (1)
- Université de Montréal, Canada (30)
- Université Laval Mémoires et thèses électroniques (2)
- University of Connecticut - USA (1)
- University of Michigan (1)
- University of Queensland eSpace - Australia (5)
- University of Washington (4)
- WestminsterResearch - UK (3)
Resumo:
Condition monitoring of wooden railway sleepers applications are generallycarried out by visual inspection and if necessary some impact acoustic examination iscarried out intuitively by skilled personnel. In this work, a pattern recognition solutionhas been proposed to automate the process for the achievement of robust results. Thestudy presents a comparison of several pattern recognition techniques together withvarious nonstationary feature extraction techniques for classification of impactacoustic emissions. Pattern classifiers such as multilayer perceptron, learning cectorquantization and gaussian mixture models, are combined with nonstationary featureextraction techniques such as Short Time Fourier Transform, Continuous WaveletTransform, Discrete Wavelet Transform and Wigner-Ville Distribution. Due to thepresence of several different feature extraction and classification technqies, datafusion has been investigated. Data fusion in the current case has mainly beeninvestigated on two levels, feature level and classifier level respectively. Fusion at thefeature level demonstrated best results with an overall accuracy of 82% whencompared to the human operator.