4 resultados para Network deployment methods

em Dalarna University College Electronic Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research is based on consumer complaints with respect to recently purchased consumer electronics. This research document will investigate the instances of development and device management as a tool used to aid consumer and manage consumer’s mobile products in order to resolve issues in or before the consumers is aware one exists. The problem at the present time is that mobile devices are becoming very advanced pieces of technology, and not all manufacturers and network providers have kept up the support element of End users. As such, the subject of the research is to investigate how device management could possibly be used as a method to promote research and development of mobile devices, and provide a better experience for the consumer. The wireless world is becoming increasingly complex as revenue opportunities are driven by new and innovative data services. We can no longer expect the customer to have the knowledge or ability to configure their own device. Device Management platforms can address the challenges of device configuration and support through new enabling technologies. Leveraging these technologies will allow a network operator to reduce the cost of subscriber ownership, drive increased ARPU (Average Revenue per User) by removing barriers to adoption, reduce churn by improving the customer experience and increase customer loyalty. DM technologies provide a flexible and powerful management method but are managing the same device features that have historically been configured manually through call centers or by the end user making changes directly on the device. For this reason DM technologies must be treated as part of a wider support solution. The traditional requirement for discovery, fault finding, troubleshooting and diagnosis are still as relevant with DM as they are in the current human support environment yet the current generation of solutions do little to address this problem. In the deployment of an effective Device Management solution the network operator must consider the integration of the DM platform, interfacing with many areas of the business, supported by knowledge of the relationship between devices, applications, solutions and services maintained on an ongoing basis. Complementing the DM solution with published device information, setup guides, training material and web based tools will ensure the quality of the customer experience, ensuring that problems are completely resolved, driving data usage by focusing customer education on the use of the wireless service In this way device management becomes a tool used both internally within the network or device vendor and by the customer themselves, with each user empowered to effectively manage the device without any prior knowledge or experience, confident that changes they apply will be relevant, accurate, stable and compatible. The value offered by an effective DM solution with an expert knowledge service will become a significant differentiator for the network operator in an ever competitive wireless market. This research document is intended to highlight some of the issues the industry faces as device management technologies become more prevalent, and offers some potential solutions to simplify the increasingly complex task of managing devices on the network, where device management can be used as a tool to aid customer relations and manage customer’s mobile products in order to resolve issues before the user is aware one exists. The research is broken down into the following, Customer Relationship Management, Device management, the role of knowledge with the DM, Companies that have successfully implemented device management, and the future of device management and CRM. And it also consists of questionnaires aimed at technical support agents and mobile device users. Interview was carried out with CRM managers within support centre to further the evidence gathered. To conclude, the document is to consider the advantages and disadvantages of device management and attempt to determine the influence it will have over customer support centre, and what methods could be used to implement it.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Video exposure monitoring (VEM) is a group of methods used for occupational hygiene studies. The method is based on a combined use of video recordings with measurements taken with real-time monitoring instruments. A commonly used name for VEM is PIMEX. Since PIMEX initially was invented in the mid 1980’s have the method been implemented and developed in a number of countries. With the aim to give an updated picture of how VEM methods are used and to investigate needs for further development have a number of workshops been organised in Finland, UK, the Netherlands, Germany and Austria. Field studies have also been made with the aim to study to what extent the PIMEX method can improve workers motivation to actively take part in actions aimed at workplace improvements.The results from the workshops illustrates clearly that there is an impressive amount of experiences and ideas for the use of VEM within the network of the groups participating in the workshops. The sharing of these experiences between the groups, as well as dissemination of it to wider groups is, however, limited. The field studies made together with a number of welders indicate that their motivation to take part in workplace improvements is improved after the PIMEX intervention. The results are however not totally conclusive and further studies focusing on motivation are called for.It is recommended that strategies for VEM, for interventions in single workplaces, as well as for exposure categorisation and production of training material are further developed. It is also recommended to conduct a research project with the intention of evaluating the effects of the use of VEM as well as to disseminate knowledge about the potential of VEM to occupational hygiene experts and others who may benefit from its use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optimal location on the transport infrastructure is the preferable requirement for many decision making processes. Most studies have focused on evaluating performances of optimally locate p facilities by minimizing their distances to a geographically distributed demand (n) when p and n vary. The optimal locations are also sensitive to geographical context such as road network, especially when they are asymmetrically distributed in the plane. The influence of alternating road network density is however not a very well-studied problem especially when it is applied in a real world context. This paper aims to investigate how the density level of the road network affects finding optimal location by solving the specific case of p-median location problem. A denser network is found needed when a higher number of facilities are to locate. The best solution will not always be obtained in the most detailed network but in a middle density level. The solutions do not further improve or improve insignificantly as the density exceeds 12,000 nodes, some solutions even deteriorate. The hierarchy of the different densities of network can be used according to location and transportation purposes and increase the efficiency of heuristic methods. The method in this study can be applied to other location-allocation problem in transportation analysis where the road network density can be differentiated. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data mining can be used in healthcare industry to “mine” clinical data to discover hidden information for intelligent and affective decision making. Discovery of hidden patterns and relationships often goes intact, yet advanced data mining techniques can be helpful as remedy to this scenario. This thesis mainly deals with Intelligent Prediction of Chronic Renal Disease (IPCRD). Data covers blood, urine test, and external symptoms applied to predict chronic renal disease. Data from the database is initially transformed to Weka (3.6) and Chi-Square method is used for features section. After normalizing data, three classifiers were applied and efficiency of output is evaluated. Mainly, three classifiers are analyzed: Decision Tree, Naïve Bayes, K-Nearest Neighbour algorithm. Results show that each technique has its unique strength in realizing the objectives of the defined mining goals. Efficiency of Decision Tree and KNN was almost same but Naïve Bayes proved a comparative edge over others. Further sensitivity and specificity tests are used as statistical measures to examine the performance of a binary classification. Sensitivity (also called recall rate in some fields) measures the proportion of actual positives which are correctly identified while Specificity measures the proportion of negatives which are correctly identified. CRISP-DM methodology is applied to build the mining models. It consists of six major phases: business understanding, data understanding, data preparation, modeling, evaluation, and deployment.