7 resultados para NETWORK MODEL
em Dalarna University College Electronic Archive
Resumo:
GPS technology has been embedded into portable, low-cost electronic devices nowadays to track the movements of mobile objects. This implication has greatly impacted the transportation field by creating a novel and rich source of traffic data on the road network. Although the promise offered by GPS devices to overcome problems like underreporting, respondent fatigue, inaccuracies and other human errors in data collection is significant; the technology is still relatively new that it raises many issues for potential users. These issues tend to revolve around the following areas: reliability, data processing and the related application. This thesis aims to study the GPS tracking form the methodological, technical and practical aspects. It first evaluates the reliability of GPS based traffic data based on data from an experiment containing three different traffic modes (car, bike and bus) traveling along the road network. It then outline the general procedure for processing GPS tracking data and discuss related issues that are uncovered by using real-world GPS tracking data of 316 cars. Thirdly, it investigates the influence of road network density in finding optimal location for enhancing travel efficiency and decreasing travel cost. The results show that the geographical positioning is reliable. Velocity is slightly underestimated, whereas altitude measurements are unreliable.Post processing techniques with auxiliary information is found necessary and important when solving the inaccuracy of GPS data. The densities of the road network influence the finding of optimal locations. The influence will stabilize at a certain level and do not deteriorate when the node density is higher.
Resumo:
The p-median problem is often used to locate p service centers by minimizing their distances to a geographically distributed demand (n). The optimal locations are sensitive to geographical context such as road network and demand points especially when they are asymmetrically distributed in the plane. Most studies focus on evaluating performances of the p-median model when p and n vary. To our knowledge this is not a very well-studied problem when the road network is alternated especially when it is applied in a real world context. The aim in this study is to analyze how the optimal location solutions vary, using the p-median model, when the density in the road network is alternated. The investigation is conducted by the means of a case study in a region in Sweden with an asymmetrically distributed population (15,000 weighted demand points), Dalecarlia. To locate 5 to 50 service centers we use the national transport administrations official road network (NVDB). The road network consists of 1.5 million nodes. To find the optimal location we start with 500 candidate nodes in the network and increase the number of candidate nodes in steps up to 67,000. To find the optimal solution we use a simulated annealing algorithm with adaptive tuning of the temperature. The results show that there is a limited improvement in the optimal solutions when nodes in the road network increase and p is low. When p is high the improvements are larger. The results also show that choice of the best network depends on p. The larger p the larger density of the network is needed.
Resumo:
A customer is presumed to gravitate to a facility by the distance to it and the attractiveness of it. However regarding the location of the facility, the presumption is that the customer opts for the shortest route to the nearest facility.This paradox was recently solved by the introduction of the gravity p-median model. The model is yet to be implemented and tested empirically. We implemented the model in an empirical problem of locating locksmiths, vehicle inspections, and retail stores ofv ehicle spare-parts, and we compared the solutions with those of the p-median model. We found the gravity p-median model to be of limited use for the problem of locating facilities as it either gives solutions similar to the p-median model, or it gives unstable solutions due to a non-concave objective function.
Resumo:
The p-medianmodel is commonly used to find optimal locations of facilities for geographically distributed demands. So far, there are few studies that have considered the importance of the road network in the model. However, Han, Håkansson, and Rebreyend (2013) examined the solutions of the p-median model with densities of the road network varying from 500 to 70,000 nodes. They found as the density went beyond some 10,000 nodes, solutions have no further improvements but gradually worsen. The aim of this study is to check their findings by using an alternative heuristic being vertex substitution, as a complement to their using simulated annealing. We reject the findings in Han et al (2013). The solutions do not further improve as the nodes exceed 10,000, but neither do the solutions deteriorate.
Resumo:
Optimal location on the transport infrastructure is the preferable requirement for many decision making processes. Most studies have focused on evaluating performances of optimally locate p facilities by minimizing their distances to a geographically distributed demand (n) when p and n vary. The optimal locations are also sensitive to geographical context such as road network, especially when they are asymmetrically distributed in the plane. The influence of alternating road network density is however not a very well-studied problem especially when it is applied in a real world context. This paper aims to investigate how the density level of the road network affects finding optimal location by solving the specific case of p-median location problem. A denser network is found needed when a higher number of facilities are to locate. The best solution will not always be obtained in the most detailed network but in a middle density level. The solutions do not further improve or improve insignificantly as the density exceeds 12,000 nodes, some solutions even deteriorate. The hierarchy of the different densities of network can be used according to location and transportation purposes and increase the efficiency of heuristic methods. The method in this study can be applied to other location-allocation problem in transportation analysis where the road network density can be differentiated.
Resumo:
To have good data quality with high complexity is often seen to be important. Intuition says that the higher accuracy and complexity the data have the better the analytic solutions becomes if it is possible to handle the increasing computing time. However, for most of the practical computational problems, high complexity data means that computational times become too long or that heuristics used to solve the problem have difficulties to reach good solutions. This is even further stressed when the size of the combinatorial problem increases. Consequently, we often need a simplified data to deal with complex combinatorial problems. In this study we stress the question of how the complexity and accuracy in a network affect the quality of the heuristic solutions for different sizes of the combinatorial problem. We evaluate this question by applying the commonly used p-median model, which is used to find optimal locations in a network of p supply points that serve n demand points. To evaluate this, we vary both the accuracy (the number of nodes) of the network and the size of the combinatorial problem (p). The investigation is conducted by the means of a case study in a region in Sweden with an asymmetrically distributed population (15,000 weighted demand points), Dalecarlia. To locate 5 to 50 supply points we use the national transport administrations official road network (NVDB). The road network consists of 1.5 million nodes. To find the optimal location we start with 500 candidate nodes in the network and increase the number of candidate nodes in steps up to 67,000 (which is aggregated from the 1.5 million nodes). To find the optimal solution we use a simulated annealing algorithm with adaptive tuning of the temperature. The results show that there is a limited improvement in the optimal solutions when the accuracy in the road network increase and the combinatorial problem (low p) is simple. When the combinatorial problem is complex (large p) the improvements of increasing the accuracy in the road network are much larger. The results also show that choice of the best accuracy of the network depends on the complexity of the combinatorial (varying p) problem.
Resumo:
Regarding the location of a facility, the presumption in the widely used p-median model is that the customer opts for the shortest route to the nearest facility. However, this assumption is problematic on free markets since the customer is presumed to gravitate to a facility by the distance to and the attractiveness of it. The recently introduced gravity p-median model offers an extension to the p-median model that account for this. The model is therefore potentially interesting, although it has not yet been implemented and tested empirically. In this paper, we have implemented the model in an empirical problem of locating vehicle inspections, locksmiths, and retail stores of vehicle spare-parts for the purpose of investigating its superiority to the p-median model. We found, however, the gravity p-median model to be of limited use for the problem of locating facilities as it either gives solutions similar to the p-median model, or it gives unstable solutions due to a non-concave objective function.