4 resultados para Monitoring urban growth

em Dalarna University College Electronic Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this paper is to study China’s income inequality under rapid economic growth.Does the relationship between economic growth and income inequality in China follow theKuznets hypothesis? What is the main cause and trend of China’s income inequality? We usedata which covers the period 1980-2005 to analyze the overall inequality, and data coveringthe period 1980-2002 to analyze the inequality inside rural and urban areas. The derivedresults doubt the validity of Kuznets hypothesis on explaining the relationship betweeneconomic growth and income inequality in China. Also we derive the trend of China’sincreased income inequality and find that the urban-rural income disparity is the main causeof China’s income inequality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Education, as an indispensable component of human capital, has been acknowledged to play a critical role in economic growth, which is theoretically elaborated by human capital theory and empirically confirmed by evidence from different parts of the world. The educational impact on growth is especially valuable and meaningful when it is for the sake of poverty reduction and pro-poorness of growth. The paper re-explores the precious link between human capital development and poverty reduction by investigating the causal effect of education accumulation on earnings enhancement for anti-poverty and pro-poor growth. The analysis takes the evidence from a well-known conditional cash transfer (CCT) program — Oportunidades in Mexico. Aiming at alleviating poverty and promoting a better future by investing in human capital for children and youth in poverty, this CCT program has been recognized producing significant outcomes. The study investigates a short-term impact of education on earnings of the economically disadvantaged youth, taking the data of both the program’s treated and untreated youth from urban areas in Mexico from 2002 to 2004. Two econometric techniques, i.e. difference-in-differences and difference-in-differences propensity score matching approach are applied for estimation. The empirical analysis first identifies that youth who under the program’s schooling intervention possess an advantage in educational attainment over their non-intervention peers; with this identification of education discrepancy as a prerequisite, further results then present that earnings of the education advantaged youth increase at a higher rate about 20 percent than earnings of their education disadvantaged peers over the two years. This result indicates a confirmation that education accumulation for the economically disadvantaged young has a positive impact on their earnings enhancement and thus inferring a contribution to poverty reduction and pro-poorness of growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vegetation growing on railway trackbeds and embankments present potential problems. The presence of vegetation threatens the safety of personnel inspecting the railway infrastructure. In addition vegetation growth clogs the ballast and results in inadequate track drainage which in turn could lead to the collapse of the railway embankment. Assessing vegetation within the realm of railway maintenance is mainly carried out manually by making visual inspections along the track. This is done either on-site or by watching videos recorded by maintenance vehicles mainly operated by the national railway administrative body. A need for the automated detection and characterisation of vegetation on railways (a subset of vegetation control/management) has been identified in collaboration with local railway maintenance subcontractors and Trafikverket, the Swedish Transport Administration (STA). The latter is responsible for long-term planning of the transport system for all types of traffic, as well as for the building, operation and maintenance of public roads and railways. The purpose of this research project was to investigate how vegetation can be measured and quantified by human raters and how machine vision can automate the same process. Data were acquired at railway trackbeds and embankments during field measurement experiments. All field data (such as images) in this thesis work was acquired on operational, lightly trafficked railway tracks, mostly trafficked by goods trains. Data were also generated by letting (human) raters conduct visual estimates of plant cover and/or count the number of plants, either on-site or in-house by making visual estimates of the images acquired from the field experiments. Later, the degree of reliability of(human) raters’ visual estimates were investigated and compared against machine vision algorithms. The overall results of the investigations involving human raters showed inconsistency in their estimates, and are therefore unreliable. As a result of the exploration of machine vision, computational methods and algorithms enabling automatic detection and characterisation of vegetation along railways were developed. The results achieved in the current work have shown that the use of image data for detecting vegetation is indeed possible and that such results could form the base for decisions regarding vegetation control. The performance of the machine vision algorithm which quantifies the vegetation cover was able to process 98% of the im-age data. Investigations of classifying plants from images were conducted in in order to recognise the specie. The classification rate accuracy was 95%.Objective measurements such as the ones proposed in thesis offers easy access to the measurements to all the involved parties and makes the subcontracting process easier i.e., both the subcontractors and the national railway administration are given the same reference framework concerning vegetation before signing a contract, which can then be crosschecked post maintenance.A very important issue which comes with an increasing ability to recognise species is the maintenance of biological diversity. Biological diversity along the trackbeds and embankments can be mapped, and maintained, through better and robust monitoring procedures. Continuously monitoring the state of vegetation along railways is highly recommended in order to identify a need for maintenance actions, and in addition to keep track of biodiversity. The computational methods or algorithms developed form the foundation of an automatic inspection system capable of objectively supporting manual inspections, or replacing manual inspections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The national railway administrations in Scandinavia, Germany, and Austria mainly resort to manual inspections to control vegetation growth along railway embankments. Manually inspecting railways is slow and time consuming. A more worrying aspect concerns the fact that human observers are often unable to estimate the true cover of vegetation on railway embankments. Further human observers often tend to disagree with each other when more than one observer is engaged for inspection. Lack of proper techniques to identify the true cover of vegetation even result in the excess usage of herbicides; seriously harming the environment and threating the ecology. Hence work in this study has investigated aspects relevant to human variationand agreement to be able to report better inspection routines. This was studied by mainly carrying out two separate yet relevant investigations.First, thirteen observers were separately asked to estimate the vegetation cover in nine imagesacquired (in nadir view) over the railway tracks. All such estimates were compared relatively and an analysis of variance resulted in a significant difference on the observers’ cover estimates (p<0.05). Bearing in difference between the observers, a second follow-up field-study on the railway tracks was initiated and properly investigated. Two railway segments (strata) representingdifferent levels of vegetationwere carefully selected. Five sample plots (each covering an area of one-by-one meter) were randomizedfrom each stratumalong the rails from the aforementioned segments and ten images were acquired in nadir view. Further three observers (with knowledge in the railway maintenance domain) were separately asked to estimate the plant cover by visually examining theplots. Again an analysis of variance resulted in a significant difference on the observers’ cover estimates (p<0.05) confirming the result from the first investigation.The differences in observations are compared against a computer vision algorithm which detects the "true" cover of vegetation in a given image. The true cover is defined as the amount of greenish pixels in each image as detected by the computer vision algorithm. Results achieved through comparison strongly indicate that inconsistency is prevalent among the estimates reported by the observers. Hence, an automated approach reporting the use of computer vision is suggested, thus transferring the manual inspections into objective monitored inspections