2 resultados para Molecular-genetic Evidence
em Dalarna University College Electronic Archive
Resumo:
Understanding the genetic basis of traits involved in adaptation is a major challenge in evolutionary biology but remains poorly understood. Here, we use genome-wide association mapping using a custom 50 k single nucleotide polymorphism (SNP) array in a natural population of collared flycatchers to examine the genetic basis of clutch size, an important life-history trait in many animal species. We found evidence for an association on chromosome 18 where one SNP significant at the genome-wide level explained 3.9% of the phenotypic variance. We also detected two suggestive quantitative trait loci (QTLs) on chromosomes 9 and 26. Fitness differences among genotypes were generally weak and not significant, although there was some indication of a sex-by-genotype interaction for lifetime reproductive success at the suggestive QTL on chromosome 26. This implies that sexual antagonism may play a role in maintaining genetic variation at this QTL. Our findings provide candidate regions for a classic avian life-history trait that will be useful for future studies examining the molecular and cellular function of, as well as evolutionary mechanisms operating at, these loci.
Resumo:
The aim of this thesis was to identify genetic factors involved in frontotemporal lobar degeneration (FTLD), a neurodegenerative disorder clinically characterised by a progressive change in personality, behaviour and language. FTLD is a genetically complex disorder and a positive family history is found in up to 40% of the cases. In 10-20% of the familial cases the disease can be explained by mutations in the gene encoding the microtubule associated protein tau (MAPT). In the first study we describe the clinical and neuropathological features of a Finnish family with FTLD caused by a mutation in MAPT. We also provide evidence that the pathogenic mechanism of this mutation is through altered splicing of MAPT transcripts. Recently, mutations in the gene encoding progranulin (PGRN) were identified as a major cause of FTLD. In the second study we describe a Swedish family with FTLD caused by a frameshift mutation in PGRN. We provide a clinical and neuropathological description of the family, as well as evidence that the pathogenicity of this mutation is through nonsense-mediated decay of the mutant mRNA transcripts and PGRN haploinsufficiency. In the third study we describe a novel PGRN splice site mutation and a previously described PGRN frameshift mutation, found in a mutation screen of 51 FTLD patients. We describe the clinical and neuropathological characteristics of the mutation carriers and demonstrate that haploinsufficiency is the pathogenic mechanism of the two mutations. In the fourth study we investigate the prevalence of PGRN and MAPT gene dosage alterations in 39 patients with FTLD. No gene dosage alterations were identified, indicating that variations in copy number of the PGRN and MAPT genes are not a common cause of disease, at least not in this FTLD patient collection.