7 resultados para Mixed model
em Dalarna University College Electronic Archive
Resumo:
This thesis develops and evaluates statistical methods for different types of genetic analyses, including quantitative trait loci (QTL) analysis, genome-wide association study (GWAS), and genomic evaluation. The main contribution of the thesis is to provide novel insights in modeling genetic variance, especially via random effects models. In variance component QTL analysis, a full likelihood model accounting for uncertainty in the identity-by-descent (IBD) matrix was developed. It was found to be able to correctly adjust the bias in genetic variance component estimation and gain power in QTL mapping in terms of precision. Double hierarchical generalized linear models, and a non-iterative simplified version, were implemented and applied to fit data of an entire genome. These whole genome models were shown to have good performance in both QTL mapping and genomic prediction. A re-analysis of a publicly available GWAS data set identified significant loci in Arabidopsis that control phenotypic variance instead of mean, which validated the idea of variance-controlling genes. The works in the thesis are accompanied by R packages available online, including a general statistical tool for fitting random effects models (hglm), an efficient generalized ridge regression for high-dimensional data (bigRR), a double-layer mixed model for genomic data analysis (iQTL), a stochastic IBD matrix calculator (MCIBD), a computational interface for QTL mapping (qtl.outbred), and a GWAS analysis tool for mapping variance-controlling loci (vGWAS).
Resumo:
Background: The sensitivity to microenvironmental changes varies among animals and may be under genetic control. It is essential to take this element into account when aiming at breeding robust farm animals. Here, linear mixed models with genetic effects in the residual variance part of the model can be used. Such models have previously been fitted using EM and MCMC algorithms. Results: We propose the use of double hierarchical generalized linear models (DHGLM), where the squared residuals are assumed to be gamma distributed and the residual variance is fitted using a generalized linear model. The algorithm iterates between two sets of mixed model equations, one on the level of observations and one on the level of variances. The method was validated using simulations and also by re-analyzing a data set on pig litter size that was previously analyzed using a Bayesian approach. The pig litter size data contained 10,060 records from 4,149 sows. The DHGLM was implemented using the ASReml software and the algorithm converged within three minutes on a Linux server. The estimates were similar to those previously obtained using Bayesian methodology, especially the variance components in the residual variance part of the model. Conclusions: We have shown that variance components in the residual variance part of a linear mixed model can be estimated using a DHGLM approach. The method enables analyses of animal models with large numbers of observations. An important future development of the DHGLM methodology is to include the genetic correlation between the random effects in the mean and residual variance parts of the model as a parameter of the DHGLM.
Resumo:
1. Genomewide association studies (GWAS) enable detailed dissections of the genetic basis for organisms' ability to adapt to a changing environment. In long-term studies of natural populations, individuals are often marked at one point in their life and then repeatedly recaptured. It is therefore essential that a method for GWAS includes the process of repeated sampling. In a GWAS, the effects of thousands of single-nucleotide polymorphisms (SNPs) need to be fitted and any model development is constrained by the computational requirements. A method is therefore required that can fit a highly hierarchical model and at the same time is computationally fast enough to be useful. 2. Our method fits fixed SNP effects in a linear mixed model that can include both random polygenic effects and permanent environmental effects. In this way, the model can correct for population structure and model repeated measures. The covariance structure of the linear mixed model is first estimated and subsequently used in a generalized least squares setting to fit the SNP effects. The method was evaluated in a simulation study based on observed genotypes from a long-term study of collared flycatchers in Sweden. 3. The method we present here was successful in estimating permanent environmental effects from simulated repeated measures data. Additionally, we found that especially for variable phenotypes having large variation between years, the repeated measurements model has a substantial increase in power compared to a model using average phenotypes as a response. 4. The method is available in the R package RepeatABEL. It increases the power in GWAS having repeated measures, especially for long-term studies of natural populations, and the R implementation is expected to facilitate modelling of longitudinal data for studies of both animal and human populations.
Resumo:
We analyze a real data set pertaining to reindeer fecal pellet-group counts obtained from a survey conducted in a forest area in northern Sweden. In the data set, over 70% of counts are zeros, and there is high spatial correlation. We use conditionally autoregressive random effects for modeling of spatial correlation in a Poisson generalized linear mixed model (GLMM), quasi-Poisson hierarchical generalized linear model (HGLM), zero-inflated Poisson (ZIP), and hurdle models. The quasi-Poisson HGLM allows for both under- and overdispersion with excessive zeros, while the ZIP and hurdle models allow only for overdispersion. In analyzing the real data set, we see that the quasi-Poisson HGLMs can perform better than the other commonly used models, for example, ordinary Poisson HGLMs, spatial ZIP, and spatial hurdle models, and that the underdispersed Poisson HGLMs with spatial correlation fit the reindeer data best. We develop R codes for fitting these models using a unified algorithm for the HGLMs. Spatial count response with an extremely high proportion of zeros, and underdispersion can be successfully modeled using the quasi-Poisson HGLM with spatial random effects.
Resumo:
Maintenance of transport infrastructure assets is widely advocated as the key in minimizing current and future costs of the transportation network. While effective maintenance decisions are often a result of engineering skills and practical knowledge, efficient decisions must also account for the net result over an asset's life-cycle. One essential aspect in the long term perspective of transport infrastructure maintenance is to proactively estimate maintenance needs. In dealing with immediate maintenance actions, support tools that can prioritize potential maintenance candidates are important to obtain an efficient maintenance strategy. This dissertation consists of five individual research papers presenting a microdata analysis approach to transport infrastructure maintenance. Microdata analysis is a multidisciplinary field in which large quantities of data is collected, analyzed, and interpreted to improve decision-making. Increased access to transport infrastructure data enables a deeper understanding of causal effects and a possibility to make predictions of future outcomes. The microdata analysis approach covers the complete process from data collection to actual decisions and is therefore well suited for the task of improving efficiency in transport infrastructure maintenance. Statistical modeling was the selected analysis method in this dissertation and provided solutions to the different problems presented in each of the five papers. In Paper I, a time-to-event model was used to estimate remaining road pavement lifetimes in Sweden. In Paper II, an extension of the model in Paper I assessed the impact of latent variables on road lifetimes; displaying the sections in a road network that are weaker due to e.g. subsoil conditions or undetected heavy traffic. The study in Paper III incorporated a probabilistic parametric distribution as a representation of road lifetimes into an equation for the marginal cost of road wear. Differentiated road wear marginal costs for heavy and light vehicles are an important information basis for decisions regarding vehicle miles traveled (VMT) taxation policies. In Paper IV, a distribution based clustering method was used to distinguish between road segments that are deteriorating and road segments that have a stationary road condition. Within railway networks, temporary speed restrictions are often imposed because of maintenance and must be addressed in order to keep punctuality. The study in Paper V evaluated the empirical effect on running time of speed restrictions on a Norwegian railway line using a generalized linear mixed model.
Resumo:
This paper presents a two-step pseudo likelihood estimation technique for generalized linear mixed models with the random effects being correlated between groups. The core idea is to deal with the intractable integrals in the likelihood function by multivariate Taylor's approximation. The accuracy of the estimation technique is assessed in a Monte-Carlo study. An application of it with a binary response variable is presented using a real data set on credit defaults from two Swedish banks. Thanks to the use of two-step estimation technique, the proposed algorithm outperforms conventional pseudo likelihood algorithms in terms of computational time.
Resumo:
This paper presents the techniques of likelihood prediction for the generalized linear mixed models. Methods of likelihood prediction is explained through a series of examples; from a classical one to more complicated ones. The examples show, in simple cases, that the likelihood prediction (LP) coincides with already known best frequentist practice such as the best linear unbiased predictor. The paper outlines a way to deal with the covariate uncertainty while producing predictive inference. Using a Poisson error-in-variable generalized linear model, it has been shown that in complicated cases LP produces better results than already know methods.