3 resultados para Microbial Population Distribution
em Dalarna University College Electronic Archive
Resumo:
We consider method of moment fixed effects (FE) estimation of technical inefficiency. When N, the number of cross sectional observations, is large it ispossible to obtain consistent central moments of the population distribution of the inefficiencies. It is well-known that the traditional FE estimator may be seriously upward biased when N is large and T, the number of time observations, is small. Based on the second central moment and a single parameter distributional assumption on the inefficiencies, we obtain unbiased technical inefficiencies in large N settings. The proposed methodology bridges traditional FE and maximum likelihood estimation – bias is reduced without the random effects assumption.
Resumo:
The aim of this paper is to evaluate the performance of two divergent methods for delineating commuting regions, also called labour market areas, in a situation that the base spatial units differ largely in size as a result of an irregular population distribution. Commuting patterns in Sweden have been analyzed with geographical information system technology by delineating commuting regions using two regionalization methods. One, a rule-based method, uses one-way commuting flows to delineate local labour market areas in a top-down procedure based on the selection of predefined employment centres. The other method, the interaction-based Intramax analysis, uses two-way flows in a bottom-up procedure based on numerical taxonomy principles. A comparison of these methods will expose a number of strengths and weaknesses. For both methods, the same data source has been used. The performance of both methods has been evaluated for the country as a whole using resident employed population, self-containment levels and job ratios for criteria. A more detailed evaluation has been done in the Goteborg metropolitan area by comparing regional patterns with the commuting fields of a number of urban centres in this area. It is concluded that both methods could benefit from the inclusion of additional control measures to identify improper allocations of municipalities.
Resumo:
This thesis contributes to the heuristic optimization of the p-median problem and Swedish population redistribution. The p-median model is the most representative model in the location analysis. When facilities are located to a population geographically distributed in Q demand points, the p-median model systematically considers all the demand points such that each demand point will have an effect on the decision of the location. However, a series of questions arise. How do we measure the distances? Does the number of facilities to be located have a strong impact on the result? What scale of the network is suitable? How good is our solution? We have scrutinized a lot of issues like those. The reason why we are interested in those questions is that there are a lot of uncertainties in the solutions. We cannot guarantee our solution is good enough for making decisions. The technique of heuristic optimization is formulated in the thesis. Swedish population redistribution is examined by a spatio-temporal covariance model. A descriptive analysis is not always enough to describe the moving effects from the neighbouring population. A correlation or a covariance analysis is more explicit to show the tendencies. Similarly, the optimization technique of the parameter estimation is required and is executed in the frame of statistical modeling.