4 resultados para Methods for Multi-criteria Evaluation
em Dalarna University College Electronic Archive
Resumo:
Background: Despite the recommendations to continue the regime of healthy food and physical activity (PA) postpartum for women with previous gestational diabetes mellitus (GDM), the scientific evidence reveals that these recommendations may not be complied to. This study compared lifestyle and health status in women whose pregnancy was complicated by GDM with women who had a normal pregnancy and delivery. Methods: The inclusion criteria were women with GDM (ICD-10: O24.4 A and O24.4B) and women with uncomplicated pregnancy and delivery in 2005 (ICD-10: O80.0). A random sample of women fulfilling the criteria (n = 882) were identified from the Swedish Medical Birth Register. A questionnaire was sent by mail to eligible women approximately four years after the pregnancy. A total of 444 women (50.8%) agreed to participate, 111 diagnosed with GDM in their pregnancy and 333 with normal pregnancy/ delivery. Results: Women with previous GDM were significantly older, reported higher body weight and less PA before the index pregnancy. No major differences between the groups were noticed regarding lifestyle at the follow-up. Overall, few participants fulfilled the national recommendations of PA and diet. At the follow-up, 19 participants had developed diabetes, all with previous GDM. Women with previous GDM reported significantly poorer self-rated health (SRH), higher level of sick-leave and more often using medication on regular basis. However, a history of GDM or having overt diabetes mellitus showed no association with poorer SRH in the multivariate analysis. Irregular eating habits, no regular PA, overweight/obesity, and regular use of medication were associated with poorer SRH in all participants. Conclusions: Suboptimal levels of PA, and fruit and vegetable consumption were found in a sample of women with a history of GDM as well as for women with normal pregnancy approximately four years after index pregnancy. Women with previous GDM seem to increase their PA after childbirth, but still they perform their PA at lower intensity than women with a history of normal pregnancy. Having GDM at index pregnancy or being diagnosed with overt diabetes mellitus at follow-up did not demonstrate associations with poorer SRH four years after delivery.
Resumo:
As a first step in assessing the potential of thermal energy storage in Swedish buildings, the current situation of the Swedish building stock and different storage methods are discussed in this paper. Overall, many buildings are from the 1960’s or earlier having a relatively high energy demand, creating opportunities for large energy savings. The major means of heating are electricity for detached houses and district heating for multi dwelling houses and premises. Cooling needs are relatively low but steadily increasing, emphasizing the need to consider energy storage for both heat and cold. The thermal mass of a building is important for passive storage of thermal energy but this has not been considered much when constructing buildings in Sweden. Instead, common ways of storing thermal energy in Swedish buildings today is in water storage tanks or in the ground using boreholes, while latent thermal energy storage is still very uncommon.
Resumo:
This thesis develops and evaluates statistical methods for different types of genetic analyses, including quantitative trait loci (QTL) analysis, genome-wide association study (GWAS), and genomic evaluation. The main contribution of the thesis is to provide novel insights in modeling genetic variance, especially via random effects models. In variance component QTL analysis, a full likelihood model accounting for uncertainty in the identity-by-descent (IBD) matrix was developed. It was found to be able to correctly adjust the bias in genetic variance component estimation and gain power in QTL mapping in terms of precision. Double hierarchical generalized linear models, and a non-iterative simplified version, were implemented and applied to fit data of an entire genome. These whole genome models were shown to have good performance in both QTL mapping and genomic prediction. A re-analysis of a publicly available GWAS data set identified significant loci in Arabidopsis that control phenotypic variance instead of mean, which validated the idea of variance-controlling genes. The works in the thesis are accompanied by R packages available online, including a general statistical tool for fitting random effects models (hglm), an efficient generalized ridge regression for high-dimensional data (bigRR), a double-layer mixed model for genomic data analysis (iQTL), a stochastic IBD matrix calculator (MCIBD), a computational interface for QTL mapping (qtl.outbred), and a GWAS analysis tool for mapping variance-controlling loci (vGWAS).
Resumo:
Internet of Things är ett samlingsbegrepp för den utveckling som innebär att olika typer av enheter kan förses med sensorer och datachip som är uppkopplade mot internet. En ökad mängd data innebär en ökad förfrågan på lösningar som kan lagra, spåra, analysera och bearbeta data. Ett sätt att möta denna förfrågan är att använda sig av molnbaserade realtidsanalystjänster. Multi-tenant och single-tenant är två typer av arkitekturer för molnbaserade realtidsanalystjänster som kan användas för att lösa problemen med hanteringen av de ökade datamängderna. Dessa arkitekturer skiljer sig åt när det gäller komplexitet i utvecklingen. I detta arbete representerar Azure Stream Analytics en multi-tenant arkitektur och HDInsight/Storm representerar en single-tenant arkitektur. För att kunna göra en jämförelse av molnbaserade realtidsanalystjänster med olika arkitekturer, har vi valt att använda oss av användbarhetskriterierna: effektivitet, ändamålsenlighet och användarnöjdhet. Vi kom fram till att vi ville ha svar på följande frågor relaterade till ovannämnda tre användbarhetskriterier: • Vilka likheter och skillnader kan vi se i utvecklingstider? • Kan vi identifiera skillnader i funktionalitet? • Hur upplever utvecklare de olika analystjänsterna? Vi har använt en design and creation strategi för att utveckla två Proof of Concept prototyper och samlat in data genom att använda flera datainsamlingsmetoder. Proof of Concept prototyperna inkluderade två artefakter, en för Azure Stream Analytics och en för HDInsight/Storm. Vi utvärderade dessa genom att utföra fem olika scenarier som var för sig hade 2-5 delmål. Vi simulerade strömmande data genom att låta en applikation kontinuerligt slumpa fram data som vi analyserade med hjälp av de två realtidsanalystjänsterna. Vi har använt oss av observationer för att dokumentera hur vi arbetade med utvecklingen av analystjänsterna samt för att mäta utvecklingstider och identifiera skillnader i funktionalitet. Vi har även använt oss av frågeformulär för att ta reda på vad användare tyckte om analystjänsterna. Vi kom fram till att Azure Stream Analytics initialt var mer användbart än HDInsight/Storm men att skillnaderna minskade efter hand. Azure Stream Analytics var lättare att arbeta med vid simplare analyser medan HDInsight/Storm hade ett bredare val av funktionalitet.