3 resultados para Macro-econometric model

em Dalarna University College Electronic Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The increase in foreign students in countries such as the US, the UK and Francesuggests that the international ‘education industry’ is growing in importance. Thepurpose of this paper is to investigate the empirical determinants of internationalstudent mobility. A secondary purpose is to give tentative policy suggestions to hostcountry, source country and also to provide some recommendations to students whowant to study abroad. Using pooled cross-sectional time series data for the US overthe time period 1993-2006, we estimate an econometric model of enrolment rates offoreign students in the US. Our results suggest that tuition fees, US federal support ofeducation, and the size of the ‘young’ generation of source countries have asignificant influence on international student mobility. We also consider other factorsthat may be relevant in this context.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Applying microeconomic theory, we develop a forecasting model for firm entry into local markets and test this model using data from the Swedish wholesale industry. The empirical analysis is based on directly estimating the profit function of wholesale firms. As in previous entry studies, profits are assumed to depend on firm- and location-specific factors,and the profit equation is estimated using panel data econometric techniques. Using the residuals from the profit equation estimations, we identify local markets in Sweden where firm profits are abnormally high given the level of all independent variables included in the profit function. From microeconomic theory, we then know that these local markets should have higher net entry than other markets, all else being equal, and we investigate this in a second step,also using a panel data econometric model. The results of estimating the net-entry equation indicate that four of five estimated models have more net entry in high-return municipalities, but the estimated parameter is only statistically significant at conventional levels in one of our estimated models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Genetic variation for environmental sensitivity indicates that animals are genetically different in their response to environmental factors. Environmental factors are either identifiable (e.g. temperature) and called macro-environmental or unknown and called micro-environmental. The objectives of this study were to develop a statistical method to estimate genetic parameters for macro- and micro-environmental sensitivities simultaneously, to investigate bias and precision of resulting estimates of genetic parameters and to develop and evaluate use of Akaike’s information criterion using h-likelihood to select the best fitting model. Methods: We assumed that genetic variation in macro- and micro-environmental sensitivities is expressed as genetic variance in the slope of a linear reaction norm and environmental variance, respectively. A reaction norm model to estimate genetic variance for macro-environmental sensitivity was combined with a structural model for residual variance to estimate genetic variance for micro-environmental sensitivity using a double hierarchical generalized linear model in ASReml. Akaike’s information criterion was constructed as model selection criterion using approximated h-likelihood. Populations of sires with large half-sib offspring groups were simulated to investigate bias and precision of estimated genetic parameters. Results: Designs with 100 sires, each with at least 100 offspring, are required to have standard deviations of estimated variances lower than 50% of the true value. When the number of offspring increased, standard deviations of estimates across replicates decreased substantially, especially for genetic variances of macro- and micro-environmental sensitivities. Standard deviations of estimated genetic correlations across replicates were quite large (between 0.1 and 0.4), especially when sires had few offspring. Practically, no bias was observed for estimates of any of the parameters. Using Akaike’s information criterion the true genetic model was selected as the best statistical model in at least 90% of 100 replicates when the number of offspring per sire was 100. Application of the model to lactation milk yield in dairy cattle showed that genetic variance for micro- and macro-environmental sensitivities existed. Conclusion: The algorithm and model selection criterion presented here can contribute to better understand genetic control of macro- and micro-environmental sensitivities. Designs or datasets should have at least 100 sires each with 100 offspring.