3 resultados para Machinery, Dynamics of

em Dalarna University College Electronic Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describe a model from system theory that can be used as a base for better understanding of different situations in the firms evolution. This change model is derived from the theory of organic systems and divides the evolution of the system into higher complexity of the system structure in three distinctive phases. These phases are a formative phase, a normative phase and an integrative phase. After a summary of different types of models of the dynamics of the firm the paper makes a theoretical presentation of the model and how this model is adaptable for better understanding of the need for change in strategic orientation, organization form and leadership style over time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the dynamics of Bose-Einstein condensates in symmetric double-well potentials following a sudden change of the potential from the Mott-insulator to the superfluid regime. We introduce a continuum approximation that maps that problem onto the wave-packet dynamics of a particle in an anharmonic effective potential. For repulsive two-body interactions the visibility of interference fringes that result from the superposition of the two condensates following a stage of ballistic expansion exhibits a collapse of coherent oscillations onto a background value whose magnitude depends on the amount of squeezing of the initial state. Strong attractive interactions are found to stabilize the relative number dynamics. We visualize the dynamics of the system in phase space using a quasiprobability distribution that allows for an intuitive interpretation of the various types of dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detection of weak forces with an accuracy beyond the standard quantum limit holds promise both for fundamental research and for technological applications. Schemes involving ultracold atoms for such measurements are now considered to be prime candidates for increased sensitivity. In this paper we use a combination of analytical and numerical techniques to investigate the possible subshot-noise estimation of applied force fields through detection of coherence dynamics of Bose-condensed atoms in asymmetric double-well traps. Following a semiclassical description of the system dynamics and fringe visibility, we present numerical simulations of the full quantum dynamics that demonstrate the dynamical production of phase squeezing beyond the standard quantum limit. Nonlinear interactions are found to limit the achievable amount to a finite value determined by the external weak force.