9 resultados para Machine Vision and Image Processing
em Dalarna University College Electronic Archive
Resumo:
The motivation for this thesis work is the need for improving reliability of equipment and quality of service to railway passengers as well as a requirement for cost-effective and efficient condition maintenance management for rail transportation. This thesis work develops a fusion of various machine vision analysis methods to achieve high performance in automation of wooden rail track inspection.The condition monitoring in rail transport is done manually by a human operator where people rely on inference systems and assumptions to develop conclusions. The use of conditional monitoring allows maintenance to be scheduled, or other actions to be taken to avoid the consequences of failure, before the failure occurs. Manual or automated condition monitoring of materials in fields of public transportation like railway, aerial navigation, traffic safety, etc, where safety is of prior importance needs non-destructive testing (NDT).In general, wooden railway sleeper inspection is done manually by a human operator, by moving along the rail sleeper and gathering information by visual and sound analysis for examining the presence of cracks. Human inspectors working on lines visually inspect wooden rails to judge the quality of rail sleeper. In this project work the machine vision system is developed based on the manual visual analysis system, which uses digital cameras and image processing software to perform similar manual inspections. As the manual inspection requires much effort and is expected to be error prone sometimes and also appears difficult to discriminate even for a human operator by the frequent changes in inspected material. The machine vision system developed classifies the condition of material by examining individual pixels of images, processing them and attempting to develop conclusions with the assistance of knowledge bases and features.A pattern recognition approach is developed based on the methodological knowledge from manual procedure. The pattern recognition approach for this thesis work was developed and achieved by a non destructive testing method to identify the flaws in manually done condition monitoring of sleepers.In this method, a test vehicle is designed to capture sleeper images similar to visual inspection by human operator and the raw data for pattern recognition approach is provided from the captured images of the wooden sleepers. The data from the NDT method were further processed and appropriate features were extracted.The collection of data by the NDT method is to achieve high accuracy in reliable classification results. A key idea is to use the non supervised classifier based on the features extracted from the method to discriminate the condition of wooden sleepers in to either good or bad. Self organising map is used as classifier for the wooden sleeper classification.In order to achieve greater integration, the data collected by the machine vision system was made to interface with one another by a strategy called fusion. Data fusion was looked in at two different levels namely sensor-level fusion, feature- level fusion. As the goal was to reduce the accuracy of the human error on the rail sleeper classification as good or bad the results obtained by the feature-level fusion compared to that of the results of actual classification were satisfactory.
Resumo:
This paper summarises the results of using image processing technique to get information about the load of timber trucks before their arrival using digital images or geo tagged images. Once the images are captured and sent to sawmill by drivers from forest, we can predict their arrival time using geo tagged coordinates, count the number of (timber) logs piled up in a truck, identify their type and calculate their diameter. With this information we can schedule and prioritise the inflow and unloading of trucks in the light of production schedules and raw material stocks available at the sawmill yard. It is important to keep all the actors in a supply chain integrated coordinated, so that optimal working routines can be reached in the sawmill yard.
Resumo:
This project is based on Artificial Intelligence (A.I) and Digital Image processing (I.P) for automatic condition monitoring of sleepers in the railway track. Rail inspection is a very important task in railway maintenance for traffic safety issues and in preventing dangerous situations. Monitoring railway track infrastructure is an important aspect in which the periodical inspection of rail rolling plane is required.Up to the present days the inspection of the railroad is operated manually by trained personnel. A human operator walks along the railway track searching for sleeper anomalies. This monitoring way is not more acceptable for its slowness and subjectivity. Hence, it is desired to automate such intuitive human skills for the development of more robust and reliable testing methods. Images of wooden sleepers have been used as data for my project. The aim of this project is to present a vision based technique for inspecting railway sleepers (wooden planks under the railway track) by automatic interpretation of Non Destructive Test (NDT) data using A.I. techniques in determining the results of inspection.
Resumo:
Parkinson’s disease (PD) is an increasing neurological disorder in an aging society. The motor and non-motor symptoms of PD advance with the disease progression and occur in varying frequency and duration. In order to affirm the full extent of a patient’s condition, repeated assessments are necessary to adjust medical prescription. In clinical studies, symptoms are assessed using the unified Parkinson’s disease rating scale (UPDRS). On one hand, the subjective rating using UPDRS relies on clinical expertise. On the other hand, it requires the physical presence of patients in clinics which implies high logistical costs. Another limitation of clinical assessment is that the observation in hospital may not accurately represent a patient’s situation at home. For such reasons, the practical frequency of tracking PD symptoms may under-represent the true time scale of PD fluctuations and may result in an overall inaccurate assessment. Current technologies for at-home PD treatment are based on data-driven approaches for which the interpretation and reproduction of results are problematic. The overall objective of this thesis is to develop and evaluate unobtrusive computer methods for enabling remote monitoring of patients with PD. It investigates first-principle data-driven model based novel signal and image processing techniques for extraction of clinically useful information from audio recordings of speech (in texts read aloud) and video recordings of gait and finger-tapping motor examinations. The aim is to map between PD symptoms severities estimated using novel computer methods and the clinical ratings based on UPDRS part-III (motor examination). A web-based test battery system consisting of self-assessment of symptoms and motor function tests was previously constructed for a touch screen mobile device. A comprehensive speech framework has been developed for this device to analyze text-dependent running speech by: (1) extracting novel signal features that are able to represent PD deficits in each individual component of the speech system, (2) mapping between clinical ratings and feature estimates of speech symptom severity, and (3) classifying between UPDRS part-III severity levels using speech features and statistical machine learning tools. A novel speech processing method called cepstral separation difference showed stronger ability to classify between speech symptom severities as compared to existing features of PD speech. In the case of finger tapping, the recorded videos of rapid finger tapping examination were processed using a novel computer-vision (CV) algorithm that extracts symptom information from video-based tapping signals using motion analysis of the index-finger which incorporates a face detection module for signal calibration. This algorithm was able to discriminate between UPDRS part III severity levels of finger tapping with high classification rates. Further analysis was performed on novel CV based gait features constructed using a standard human model to discriminate between a healthy gait and a Parkinsonian gait. The findings of this study suggest that the symptom severity levels in PD can be discriminated with high accuracies by involving a combination of first-principle (features) and data-driven (classification) approaches. The processing of audio and video recordings on one hand allows remote monitoring of speech, gait and finger-tapping examinations by the clinical staff. On the other hand, the first-principles approach eases the understanding of symptom estimates for clinicians. We have demonstrated that the selected features of speech, gait and finger tapping were able to discriminate between symptom severity levels, as well as, between healthy controls and PD patients with high classification rates. The findings support suitability of these methods to be used as decision support tools in the context of PD assessment.
Resumo:
The demands of image processing related systems are robustness, high recognition rates, capability to handle incomplete digital information, and magnanimous flexibility in capturing shape of an object in an image. It is exactly here that, the role of convex hulls comes to play. The objective of this paper is twofold. First, we summarize the state of the art in computational convex hull development for researchers interested in using convex hull image processing to build their intuition, or generate nontrivial models. Secondly, we present several applications involving convex hulls in image processing related tasks. By this, we have striven to show researchers the rich and varied set of applications they can contribute to. This paper also makes a humble effort to enthuse prospective researchers in this area. We hope that the resulting awareness will result in new advances for specific image recognition applications.
Resumo:
This study examines the question of how language teachers in a highly technologyfriendly university environment view machine translation and the implications that this has for the personal learning environments of students. It brings an activity-theory perspective to the question, examining the ways that the introduction of new tools can disrupt the relationship between different elements in an activity system. This perspective opens up for an investigation of the ways that new tools have the potential to fundamentally alter traditional learning activities. In questionnaires and group discussions, respondents showed general agreement that although use of machine translation by students could be considered cheating, students are bound to use it anyway, and suggested that teachers focus on the kinds of skills students would need when using machine translation and design assignments and exams to practice and assess these skills. The results of the empirical study are used to reflect upon questions of what the roles of teachers and students are in a context where many of the skills that a person needs to be able to interact in a foreign language increasingly can be outsourced to laptops and smartphones.
Resumo:
This study examines the question of how language teachers in a highly technology-friendly university environment view machine translation and the implications that this has for the personal learning environments of students. It brings an activity-theory perspective to the question, examining the ways that the introduction of new tools can disrupt the relationship between different elements in an activity system. This perspective opens up for an investigation of the ways that new tools have the potential to fundamentally alter traditional learning activities. In questionnaires and group discussions, respondents showed general agreement that although use of machine translation by students could be considered cheating, students are bound to use it anyway, and suggested that teachers focus on the kinds of skills students would need when using machine translation and design assignments and exams to practice and assess these skills. The results of the empirical study are used to reflect upon questions of what the roles of teachers and students are in a context where many of the skills that a person needs to be able to interact in a foreign language increasingly can be outsourced to laptops and smartphones.
Resumo:
This thesis is an investigation on the corporate identity of the firm SSAB from a managerial viewpoint (1), the company communication through press releases (2), and the image of the company as portrayed in news press articles (3). The managerial view of the corporate identity is researched through interviews with a communication manager of SSAB (1), the corporate communication is researched through press releases from the company (2) and the image is researched in news press articles (3). The results have been deducted using content analysis. The three dimensions are compared in order to see if the topics are coherent. This work builds on earlier research in corporate identity and image research, stakeholder theory, corporate communication and media reputation theory. This is interesting to research as the image of the company framed by the media affects, among other things, the possibility for the company to attract new talent and employees. If there are different stories, or topics, told in the three dimensions then the future employees may not share the view of the company with the managers in it. The analysis show that there is a discrepancy between the topics on the three dimensions, both between the corporate identity and the communication through press releases, as well as between the communication through press releases and the image in news press articles.