1 resultado para MAXIMUM LIKELIHOOD ESTIMATOR
em Dalarna University College Electronic Archive
Filtro por publicador
- Aberdeen University (1)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- Aquatic Commons (12)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (5)
- Aston University Research Archive (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (32)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (69)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (6)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (8)
- Boston University Digital Common (5)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (8)
- CaltechTHESIS (3)
- Cambridge University Engineering Department Publications Database (39)
- CentAUR: Central Archive University of Reading - UK (57)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (54)
- Cochin University of Science & Technology (CUSAT), India (4)
- Collection Of Biostatistics Research Archive (5)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (4)
- Digital Commons at Florida International University (3)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (5)
- Duke University (5)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (15)
- Greenwich Academic Literature Archive - UK (10)
- Helda - Digital Repository of University of Helsinki (12)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (69)
- Instituto Politécnico do Porto, Portugal (2)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (3)
- Massachusetts Institute of Technology (12)
- National Center for Biotechnology Information - NCBI (4)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (4)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (21)
- Queensland University of Technology - ePrints Archive (91)
- Repositório digital da Fundação Getúlio Vargas - FGV (9)
- Repositorio Institucional da UFLA (RIUFLA) (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (255)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (5)
- Universidad Politécnica de Madrid (5)
- Universidade Complutense de Madrid (2)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (19)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (6)
- Université de Lausanne, Switzerland (4)
- Université de Montréal, Canada (28)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (3)
- University of Queensland eSpace - Australia (4)
- University of Washington (1)
Resumo:
We consider method of moment fixed effects (FE) estimation of technical inefficiency. When N, the number of cross sectional observations, is large it ispossible to obtain consistent central moments of the population distribution of the inefficiencies. It is well-known that the traditional FE estimator may be seriously upward biased when N is large and T, the number of time observations, is small. Based on the second central moment and a single parameter distributional assumption on the inefficiencies, we obtain unbiased technical inefficiencies in large N settings. The proposed methodology bridges traditional FE and maximum likelihood estimation – bias is reduced without the random effects assumption.