3 resultados para Lower temperatures

em Dalarna University College Electronic Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using a physically based model, the microstructural evolution of Nb microalloyed steels during rolling in SSAB Tunnplåt’s hot strip mill was modeled. The model describes the evolution of dislocation density, the creation and diffusion of vacancies, dynamic and static recovery through climb and glide, subgrain formation and growth, dynamic and static recrystallization and grain growth. Also, the model describes the dissolution and precipitation of particles. The impeding effect on grain growth and recrystallization due to solute drag and particles is accounted for. During hot strip rolling of Nb steels, Nb in solid solution retards recrystallization due to solute drag and at lower temperatures strain-induced precipitation of Nb(C,N) may occur which effectively retard recrystallization. The flow stress behavior during hot rolling was calculated where the mean flow stress values were calculated using both the model and measured mill data. The model showed that solute drag has an essential effect on recrystallization during hot rolling of Nb steels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This report describes the work done creating a computer model of a kombi tank from Consolar. The model was created with Presim/Trnsys and Fittrn and DF were used to identify the parameters. Measurements were carried out and were used to identify the values of the parameters in the model. The identifications were first done for every circuit separately. After that, all parameters are normally identified together using all the measurements. Finally the model should be compared with other measurements, preferable realistic ones. The two last steps have not yet been carried out, because of problems finding a good model for the domestic hot water circuit.The model of the domestic hot water circuit give relatively good results for low flows at 5 l/min, but is not good for higher flows. In the report suggestions for improving the model are given. However, there was not enough time to test this within the project as much time was spent trying to solve problems with the model crashing. Suggestions for improving the model for the domestic circuit are given in chapter 4.4. The improved equations that are to be used in the improved model are given by equation 4.18, 4.19 and 4.22.Also for the boiler circuit and the solar circuit there are improvements that can be done. The model presented here has a few shortcomings, but with some extra work, an improved model can be created. In the attachment (Bilaga 1) is a description of the used model and all the identified parameters.A qualitative assessment of the store was also performed based on the measurements and the modelling carried out. The following summary of this can be given: Hot Water PreparationThe principle for controlling the flow on the primary side seems to work well in order to achieve good stratification. Temperatures in the bottom of the store after a short use of hot water, at a coldwater temperature of 12°C, was around 28-30°C. This was almost independent of the temperature in the store and the DHW-flow.The measured UA-values of the heat exchangers are not very reliable, but indicates that the heat transfer rates are much better than for the Conus 500, and in the same range as for other stores tested at SERC.The function of the mixing valve is not perfect (see diagram 4.3, where Tout1 is the outlet hot water temperature, and Tdhwo and Tdhw1 is the inlet temperature to the hot and cold side of the valve respectively). The outlet temperature varies a lot with different temperatures in the storage and is going down from 61°C to 47°C before the cold port is fully closed. This gives a problem to find a suitable temperature setting and gives also a risk that the auxiliary heating is increased instead of the set temperature of the valve, when the hot water temperature is to low.Collector circuitThe UA-value of the collector heat exchanger is much higher than the value for Conus 500, and in the same range as the heat exchangers in other stores tested at SERC.Boiler circuitThe valve in the boiler circuit is used to supply water from the boiler at two different heights, depending on the temperature of the water. At temperatures from the boiler above 58.2°C, all the water is injected to the upper inlet. At temperatures below 53.9°C all the water is injected to the lower inlet. At 56°C the water flow is equally divided between the two inlets. Detailed studies of the behaviour at the upper inlet shows that better accuracy of the model would have been achieved using three double ports in the model instead of two. The shape of the upper inlet makes turbulence, that could be modelled using two different inlets. Heat lossesThe heat losses per m3 are much smaller for the Solus 1050, than for the Conus 500 Storage. However, they are higher than those for some good stores tested at SERC. The pipes that are penetrating the insulation give air leakage and cold bridges, which could be a major part of the losses from the storage. The identified losses from the bottom of the storage are exceptionally high, but have less importance for the heat losses, due to the lower temperatures in the bottom. High losses from the bottom can be caused by air leakage through the insulation at the pipe connections of the storage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The submerged entry nozzle (SEN) is used to transport the molten steel from a tundish to a mould. The main purpose of its usage is to prevent oxygen and nitrogen pick-up by molten steel from the gas. Furthermore, to achieve the desired flow conditions in the mould. Therefore, the SEN can be considered as a vital factor for a stable casting process and the steel quality. In addition, the steelmaking processes occur at high temperatures around 1873 K, so the interaction between the refractory materials of the SEN and molten steel is unavoidable. Therefore, the knowledge of the SEN behaviors during preheating and casting processes is necessary for the design of the steelmaking processes  The internal surfaces of modern SENs are coated with a glass/silicon powder layer to prevent the SEN graphite oxidation during preheating. The effects of the interaction between the coating layer and the SEN base refractory materials on clogging were studied. A large number of accretion samples formed inside alumina-graphite clogged SENs were examined using FEG-SEM-EDS and Feature analysis. The internal coated SENs were used for continuous casting of stainless steel grades alloyed with Rare Earth Metals (REM). The post-mortem study results clearly revealed the formation of a multi-layer accretion. A harmful effect of the SENs decarburization on the accretion thickness was also indicated. In addition, the results indicated a penetration of the formed alkaline-rich glaze into the alumina-graphite base refractory. More specifically, the alkaline-rich glaze reacts with graphite to form a carbon monoxide gas. Thereafter, dissociation of CO at the interface between SEN and molten metal takes place. This leads to reoxidation of dissolved alloying elements such as REM (Rare Earth Metal). This reoxidation forms the “In Situ” REM oxides at the interface between the SEN and the REM alloyed molten steel. Also, the interaction of the penetrated glaze with alumina in the SEN base refractory materials leads to the formation of a high-viscous alumina-rich glaze during the SEN preheating process. This, in turn, creates a very uneven surface at the SEN internal surface. Furthermore, these uneven areas react with dissolved REM in molten steel to form REM aluminates, REM silicates and REM alumina-silicates. The formation of the large “in-situ” REM oxides and the reaction of the REM alloying elements with the previously mentioned SEN´s uneven areas may provide a large REM-rich surface in contact with the primary inclusions in molten steel. This may facilitate the attraction and agglomeration of the primary REM oxide inclusions on the SEN internal surface and thereafter the clogging. The study revealed the disadvantages of the glass/silicon powder coating applications and the SEN decarburization. The decarburization behaviors of Al2O3-C, ZrO2-C and MgO-C refractory materials from a commercial Submerged Entry Nozzle (SEN), were also investigated for different gas atmospheres consisting of CO2, O2 and Ar. The gas ratio values were kept the same as it is in a propane combustion flue gas at different Air-Fuel-Ratio (AFR) values for both Air-Fuel and Oxygen-Fuel combustion systems. Laboratory experiments were carried out under nonisothermal conditions followed by isothermal heating. The decarburization ratio (α) values of all three refractory types were determined by measuring the real time weight losses of the samples. The results showed the higher decarburization ratio (α) values increasing for MgO-C refractory when changing the Air-Fuel combustion to Oxygen-Fuel combustion at the same AFR value. It substantiates the SEN preheating advantage at higher temperatures for shorter holding times compared to heating at lower temperatures during longer holding times for Al2O3-C samples. Diffusion models were proposed for estimation of the decarburization rate of an Al2O3-C refractory in the SEN. Two different methods were studied to prevent the SEN decarburization during preheating: The effect of an ZrSi2 antioxidant and the coexistence of an antioxidant additive and a (4B2O3 ·BaO) glass powder on carbon oxidation for non-isothermal and isothermal heating conditions in a controlled atmosphere. The coexistence of 8 wt% ZrSi2 and 15 wt% (4B2O3 ·BaO) glass powder of the total alumina-graphite refractory base materials, presented the most effective resistance to carbon oxidation. The 121% volume expansion due to the Zircon formation during heating and filling up the open pores by a (4B2O3 ·BaO) glaze during the green body sintering led to an excellent carbon oxidation resistance. The effects of the plasma spray-PVD coating of the Yttria Stabilized Zirconia (YSZ) powder on the carbon oxidation of the Al2O3-C coated samples were investigated. Trials were performed at non-isothermal heating conditions in a controlled atmosphere. Also, the applied temperature profile for the laboratory trials were defined based on the industrial preheating trials. The controlled atmospheres consisted of CO2, O2 and Ar. The thicknesses of the decarburized layers were measured and examined using light optic microscopy, FEG-SEM and EDS. A 250-290 μm YSZ coating is suggested to be an appropriate coating, as it provides both an even surface as well as prevention of the decarburization even during heating in air. In addition, the interactions between the YSZ coated alumina-graphite refractory base materials in contact with a cerium alloyed molten stainless steel were surveyed. The YSZ coating provided a total prevention of the alumina reduction by cerium. Therefore, the prevention of the first clogging product formed on the surface of the SEN refractory base materials. Therefore, the YSZ plasma-PVD coating can be recommended for coating of the hot surface of the commercial SENs.