8 resultados para Location of Zeros
em Dalarna University College Electronic Archive
Resumo:
The p-median problem is often used to locate p service centers by minimizing their distances to a geographically distributed demand (n). The optimal locations are sensitive to geographical context such as road network and demand points especially when they are asymmetrically distributed in the plane. Most studies focus on evaluating performances of the p-median model when p and n vary. To our knowledge this is not a very well-studied problem when the road network is alternated especially when it is applied in a real world context. The aim in this study is to analyze how the optimal location solutions vary, using the p-median model, when the density in the road network is alternated. The investigation is conducted by the means of a case study in a region in Sweden with an asymmetrically distributed population (15,000 weighted demand points), Dalecarlia. To locate 5 to 50 service centers we use the national transport administrations official road network (NVDB). The road network consists of 1.5 million nodes. To find the optimal location we start with 500 candidate nodes in the network and increase the number of candidate nodes in steps up to 67,000. To find the optimal solution we use a simulated annealing algorithm with adaptive tuning of the temperature. The results show that there is a limited improvement in the optimal solutions when nodes in the road network increase and p is low. When p is high the improvements are larger. The results also show that choice of the best network depends on p. The larger p the larger density of the network is needed.
Resumo:
The p-median problem is often used to locate P service facilities in a geographically distributed population. Important for the performance of such a model is the distance measure. Distance measure can vary if the accuracy of the road network varies. The rst aim in this study is to analyze how the optimal location solutions vary, using the p-median model, when the road network is alternated. It is hard to nd an exact optimal solution for p-median problems. Therefore, in this study two heuristic solutions are applied, simulating annealing and a classic heuristic. The secondary aim is to compare the optimal location solutions using dierent algorithms for large p-median problem. The investigation is conducted by the means of a case study in a rural region with an asymmetrically distributed population, Dalecarlia. The study shows that the use of more accurate road networks gives better solutions for optimal location, regardless what algorithm that is used and regardless how many service facilities that is optimized for. It is also shown that the simulated annealing algorithm not just is much faster than the classic heuristic used here, but also in most cases gives better location solutions.
Resumo:
We analyze a real data set pertaining to reindeer fecal pellet-group counts obtained from a survey conducted in a forest area in northern Sweden. In the data set, over 70% of counts are zeros, and there is high spatial correlation. We use conditionally autoregressive random effects for modeling of spatial correlation in a Poisson generalized linear mixed model (GLMM), quasi-Poisson hierarchical generalized linear model (HGLM), zero-inflated Poisson (ZIP), and hurdle models. The quasi-Poisson HGLM allows for both under- and overdispersion with excessive zeros, while the ZIP and hurdle models allow only for overdispersion. In analyzing the real data set, we see that the quasi-Poisson HGLMs can perform better than the other commonly used models, for example, ordinary Poisson HGLMs, spatial ZIP, and spatial hurdle models, and that the underdispersed Poisson HGLMs with spatial correlation fit the reindeer data best. We develop R codes for fitting these models using a unified algorithm for the HGLMs. Spatial count response with an extremely high proportion of zeros, and underdispersion can be successfully modeled using the quasi-Poisson HGLM with spatial random effects.
Resumo:
Combinatorial optimization problems, are one of the most important types of problems in operational research. Heuristic and metaheuristics algorithms are widely applied to find a good solution. However, a common problem is that these algorithms do not guarantee that the solution will coincide with the optimum and, hence, many solutions to real world OR-problems are afflicted with an uncertainty about the quality of the solution. The main aim of this thesis is to investigate the usability of statistical bounds to evaluate the quality of heuristic solutions applied to large combinatorial problems. The contributions of this thesis are both methodological and empirical. From a methodological point of view, the usefulness of statistical bounds on p-median problems is thoroughly investigated. The statistical bounds have good performance in providing informative quality assessment under appropriate parameter settings. Also, they outperform the commonly used Lagrangian bounds. It is demonstrated that the statistical bounds are shown to be comparable with the deterministic bounds in quadratic assignment problems. As to empirical research, environment pollution has become a worldwide problem, and transportation can cause a great amount of pollution. A new method for calculating and comparing the CO2-emissions of online and brick-and-mortar retailing is proposed. It leads to the conclusion that online retailing has significantly lesser CO2-emissions. Another problem is that the Swedish regional division is under revision and the border effect to public service accessibility is concerned of both residents and politicians. After analysis, it is shown that borders hinder the optimal location of public services and consequently the highest achievable economic and social utility may not be attained.
Resumo:
Planning policies in several European countries have aimed at hindering the expansion of out-of-town shopping centers. One argument for this is concern for the increase in transport and a resulting increase in environmental externalities such as CO2-emissions. This concern is weakly founded in science as few studies have attempted to measure CO2-emissions of shopping trips as a function of the location of the shopping centers. In this paper we conduct a counter-factual analysis comparing downtown, edge-of-town and out-of-town shopping. In this comparison we use GPS to track 250 consumers over a time-span of two months in a Swedish region. The GPS-data enters the Oguchi’s formula to obtain shopping trip-specific CO2-emissions. We find that consumers’ out-of-town shopping would generate an excess of 60 per cent CO2-emissions whereas downtown and edge-of-town shopping centers are comparable.
Resumo:
Location Models are usedfor planning the location of multiple service centers in order to serve a geographicallydistributed population. A cornerstone of such models is the measure of distancebetween the service center and a set of demand points, viz, the location of thepopulation (customers, pupils, patients and so on). Theoretical as well asempirical evidence support the current practice of using the Euclidian distancein metropolitan areas. In this paper, we argue and provide empirical evidencethat such a measure is misleading once the Location Models are applied to ruralareas with heterogeneous transport networks. This paper stems from the problemof finding an optimal allocation of a pre-specified number of hospitals in alarge Swedish region with a low population density. We conclude that the Euclidianand the network distances based on a homogenous network (equal travel costs inthe whole network) give approximately the same optimums. However networkdistances calculated from a heterogeneous network (different travel costs indifferent parts of the network) give widely different optimums when the numberof hospitals increases. In terms ofaccessibility we find that the recent closure of hospitals and the in-optimallocation of the remaining ones has increased the average travel distance by 75%for the population. Finally, aggregation the population misplaces the hospitalsby on average 10 km.
Resumo:
In this paper, the p-median model is used to find the location of retail stores that minimizes CO2 emissions from consumer travel. The optimal location is then compared with the existing retail location,and the excess CO2 emissions compared with the optimal solution is calculated. The results show that by using the environmentally optimal location, CO2 emissions from consumer travel could be reduced by approximately 25percent.
Resumo:
A customer is presumed to gravitate to a facility by the distance to it and the attractiveness of it. However regarding the location of the facility, the presumption is that the customer opts for the shortest route to the nearest facility.This paradox was recently solved by the introduction of the gravity p-median model. The model is yet to be implemented and tested empirically. We implemented the model in an empirical problem of locating locksmiths, vehicle inspections, and retail stores ofv ehicle spare-parts, and we compared the solutions with those of the p-median model. We found the gravity p-median model to be of limited use for the problem of locating facilities as it either gives solutions similar to the p-median model, or it gives unstable solutions due to a non-concave objective function.