10 resultados para Load forecasting
em Dalarna University College Electronic Archive
Resumo:
The Thesis focused on hardware based Load balancing solution of web traffic through a load balancer F5 content switch. In this project, the implemented scenario for distributing HTTPtraffic load is based on different CPU usages (processing speed) of multiple member servers.Two widely used load balancing algorithms Round Robin (RR) and Ratio model (weighted Round Robin) are implemented through F5 load balancer. For evaluating the performance of F5 content switch, some experimental tests has been taken on implemented scenarios using RR and Ratio model load balancing algorithms. The performance is examined in terms of throughput (bits/sec) and Response time of member servers in a load balancing pool. From these experiments we have observed that Ratio Model load balancing algorithm is most suitable in the environment of load balancing servers with different CPU usages as it allows assigning the weight according to CPU usage both in static and dynamic load balancing of servers.
Resumo:
During the last decade, the Internet usage has been growing at an enormous rate which has beenaccompanied by the developments of network applications (e.g., video conference, audio/videostreaming, E-learning, E-Commerce and real-time applications) and allows several types ofinformation including data, voice, picture and media streaming. While end-users are demandingvery high quality of service (QoS) from their service providers, network undergoes a complex trafficwhich leads the transmission bottlenecks. Considerable effort has been made to study thecharacteristics and the behavior of the Internet. Simulation modeling of computer networkcongestion is a profitable and effective technique which fulfills the requirements to evaluate theperformance and QoS of networks. To simulate a single congested link, simulation is run with asingle load generator while for a larger simulation with complex traffic, where the nodes are spreadacross different geographical locations generating distributed artificial loads is indispensable. Onesolution is to elaborate a load generation system based on master/slave architecture.
Resumo:
Ghana faces a macroeconomic problem of inflation for a long period of time. The problem in somehow slows the economic growth in this country. As we all know, inflation is one of the major economic challenges facing most countries in the world especially those in African including Ghana. Therefore, forecasting inflation rates in Ghana becomes very important for its government to design economic strategies or effective monetary policies to combat any unexpected high inflation in this country. This paper studies seasonal autoregressive integrated moving average model to forecast inflation rates in Ghana. Using monthly inflation data from July 1991 to December 2009, we find that ARIMA (1,1,1)(0,0,1)12 can represent the data behavior of inflation rate in Ghana well. Based on the selected model, we forecast seven (7) months inflation rates of Ghana outside the sample period (i.e. from January 2010 to July 2010). The observed inflation rate from January to April which was published by Ghana Statistical Service Department fall within the 95% confidence interval obtained from the designed model. The forecasted results show a decreasing pattern and a turning point of Ghana inflation in the month of July.
Resumo:
A massive amount has been written about forecasting but few articles are written about the development of time series models of call volumes for emergency services. In this study, we use different techniques for forecasting and make the comparison of the techniques for the call volume of the emergency service Rescue 1122 Lahore, Pakistan. For the purpose of this study data is taken from emergency calls of Rescue 1122 from 1st January 2008 to 31 December 2009 and 731 observations are used. Our goal is to develop a simple model that could be used for forecasting the daily call volume. Two different approaches are used for forecasting the daily call volume Box and Jenkins (ARIMA) methodology and Smoothing methodology. We generate the models for forecasting of call volume and present a comparison of the two different techniques.
Resumo:
In Sweden solar irradiation and space heating loads are unevenly distributed over the year. Domestic hot water loads may be nearly constant. Test results on solar collector performance are often reported as yearly output of a certain collector at fixed temperatures, e g 25, 50 and 75 C. These data are not suitable for dimensioning of solar systems, because the actual performance of the collector depends heavily on solar fraction and load distribution over the year.At higher latitudes it is difficult to attain high solar fractions for buildings, due to overheating in summer and small marginal output for added collector area. Solar collectors with internal reflectors offer possibilities to evade overheating problems and deliver more energy at seasons when the load is higher. There are methods for estimating the yearly angular irradiation distribution, but there is a lack of methods for describing the load and the storage in such a way as to enable optical design of season and load adapted collectors.This report describes two methods for estimation of solar system performance with relevance for season and load adaption. Results regarding attainable solar fractions as a function of collector features, load profiles, load levels and storage characteristics are reported. The first method uses monthly collector output data at fixed temperatures from the simulation program MINSUN for estimating solar fractions for different load profiles and load levels. The load level is defined as estimated yearly collector output at constant collector temperature divided be yearly load. This table may examplify the results:CollectorLoadLoadSolar Improvementtypeprofile levelfractionover flat plateFlat plateDHW 75 %59 %Load adaptedDHW 75 %66 %12 %Flat plateSpace heating 50 %22 %Load adaptedSpace heating 50 %28 %29 %The second method utilises simulations with one-hour timesteps for collectors connected to a simplified storage and a variable load. Collector output, optical and thermal losses, heat overproduction, load level and storage temperature are presented as functions of solar incidence angles. These data are suitable for optical design of load adapted solar collectors. Results for a Stockholm location indicate that a solar combisystem with a solar fraction around 30 % should have collectors that reduce heat production at solar heights above 30 degrees and have optimum efficiency for solar heights between 8 and 30 degrees.
Resumo:
In a northern European climate a typical solar combisystem for a single family house normally saves between 10 and 30 % of the auxiliary energy needed for space heating and domestic water heating. It is considered uneconomical to dimension systems for higher energy savings. Overheating problems may also occur. One way of avoiding these problems is to use a collector that is designed so that it has a low optical efficiency in summer, when the solar elevation is high and the load is small, and a high optical efficiency in early spring and late fall when the solar elevation is low and the load is large.The study investigates the possibilities to design the system and, in particular, the collector optics, in order to match the system performance with the yearly variations of the heating load and the solar irradiation. It seems possible to design practically viable load adapted collectors, and to use them for whole roofs ( 40 m2) without causing more overheating stress on the system than with a standard 10 m2 system. The load adapted collectors collect roughly as much energy per unit area as flat plate collectors, but they may be produced at a lower cost due to lower material costs. There is an additional potential for a cost reduction since it is possible to design the load adapted collector for low stagnation temperatures making it possible to use less expensive materials. One and the same collector design is suitable for a wide range of system sizes and roof inclinations. The report contains descriptions of optimized collector designs, properties of realistic collectors, and results of calculations of system output, stagnation performance and cost performance. Appropriate computer tools for optical analysis, optimization of collectors in systems and a very fast simulation model have been developed.
Resumo:
Dagens kombisolvärmesystem för enfamiljshus har i storleksordningen 10 m2 solfångare och kan täcka i runda tal 10 ? 30 % av det årliga värmebehovet. Ökar man solfångarytan för att öka solvärmetäckningsgraden uppstår det vanligtvis en överproduktion av värme sommartid viket kan orsaka problem i form av termisk utmattning av material, att material förstörs eller att säkerhetsventiler utlöses med driftsstopp som följd. Vidare förkortas glykolens livslängd radikalt och detta kan ge följdskador såsom korrosion, beläggningar i rören och t o m igensättning av systemet. Ett sätt att undvika problemen med överhettning i solvärmesystem med hög täckningsgrad är att använda lastanpassade solfångare. Med detta menas solfångare som har en verkningsgrad som är beroende av solhöjden och varierar över året. Verkningsgraden är hög när värmelasten är hög (vanligtvis sen höst, vinter och tidig vår) medan verkningsgraden är låg då värmelasten är låg (vanligtvis sen vår, sommar och tidig höst). I denna rapport visas att det är möjligt att bygga lastanpassade solfångarsystem med hög täckningsgrad för enfamiljshus med solfångarytor som täcker hela villatak (>= 40 m2), utan att den termiska påfrestningen på systemet blir större än för vanliga solvärmesystem med 10 m2 plana solfångare. Detta kan göras med samma systemkomponenter som finns i system med plana solfångare. De lastanpassade solfångarna levererar ungefär samma energimängd per m2 som plana solfångare, men de bör kunna bli billigare, på grund av lägre materialkostnad. Det finns även en potential att konstruera lastanpassade solvärmesystem med begränsad stagnationstemperatur, vilket kan möjliggöra användandet av billigare material. En och samma solfångartyp är lämplig för såväl stora som små system och för olika takvinklar. I rapporten redovisas optimerade solfångargeometrier för lastanpassade solvärmesystem, geometrier och optiska egenskaper för praktiskt möjliga solfångare samt beräkningar av förväntat årsutbyte, stagnationstemperaturer, stagnationstider och kostnader. Testresultat för två prototyper av lastanpassade solfångare presenteras. Optimeringsalgoritmer för design av optiken för lastanpassade solfångare i system samt ett ray-tracingverktyg och snabba men ändå tillräckligt noggranna simuleringsverktyg har utvecklats.
Resumo:
This work concerns forecasting with vector nonlinear time series models when errorsare correlated. Point forecasts are numerically obtained using bootstrap methods andillustrated by two examples. Evaluation concentrates on studying forecast equality andencompassing. Nonlinear impulse responses are further considered and graphically sum-marized by highest density region. Finally, two macroeconomic data sets are used toillustrate our work. The forecasts from linear or nonlinear model could contribute usefulinformation absent in the forecasts form the other model.
Resumo:
Wider economic benefits resulting from extended geographical mobility is one argument for investments in high-speed rail. More specifically, the argument for high-speed trains in Sweden has been that they can help to further spatially extend labor market regions which in turn has a positive effect on growth and development. In this paper the aim is to cartographically visualize the potential size of the labor markets in areas that could be affected by possible future high-speed trains. The visualization is based on the forecasts of labor mobility with public transport made by the Swedish national mobility transport forecasting tool, SAMPERS, for two alternative high-speed rail scenarios. The analysis, not surprisingly, suggests that the largest impact of high-speed trains results in the area where the future high speed rail tracks are planned to be built. This expected effect on local labor market regions of high-speed trains could mean that possible regional economic development effects also are to be expected in this area. However, the results, in general, from the SAMPERS forecasts indicaterelatively small increases in local labor market potentials.
Resumo:
The gradual changes in the world development have brought energy issues back into high profile. An ongoing challenge for countries around the world is to balance the development gains against its effects on the environment. The energy management is the key factor of any sustainable development program. All the aspects of development in agriculture, power generation, social welfare and industry in Iran are crucially related to the energy and its revenue. Forecasting end-use natural gas consumption is an important Factor for efficient system operation and a basis for planning decisions. In this thesis, particle swarm optimization (PSO) used to forecast long run natural gas consumption in Iran. Gas consumption data in Iran for the previous 34 years is used to predict the consumption for the coming years. Four linear and nonlinear models proposed and six factors such as Gross Domestic Product (GDP), Population, National Income (NI), Temperature, Consumer Price Index (CPI) and yearly Natural Gas (NG) demand investigated.