2 resultados para Load flow control

em Dalarna University College Electronic Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Overcrowding in emergency departments is a worldwide problem. A systematic literature review was undertaken to scientifically explore which interventions improve patient flow in emergency departments. Methods A systematic literature search for flow processes in emergency departments was followed by assessment of relevance and methodological quality of each individual study fulfilling the inclusion criteria. Studies were excluded if they did not present data on waiting time, length of stay, patients leaving the emergency department without being seen or other flow parameters based on a nonselected material of patients. Only studies with a control group, either in a randomized controlled trial or in an observational study with historical controls, were included. For each intervention, the level of scientific evidence was rated according to the GRADE system, launched by a WHO-supported working group. Results The interventions were grouped into streaming, fast track, team triage, point-of-care testing (performing laboratory analysis in the emergency department), and nurse-requested x-ray. Thirty-three studies, including over 800,000 patients in total, were included. Scientific evidence on the effect of fast track on waiting time, length of stay, and left without being seen was moderately strong. The effect of team triage on left without being seen was relatively strong, but the evidence for all other interventions was limited or insufficient. Conclusions Introducing fast track for patients with less severe symptoms results in shorter waiting time, shorter length of stay, and fewer patients leaving without being seen. Team triage, with a physician in the team, will probably result in shorter waiting time and shorter length of stay and most likely in fewer patients leaving without being seen. There is only limited scientific evidence that streaming of patients into different tracks, performing laboratory analysis in the emergency department or having nurses to request certain x-rays results in shorter waiting time and length of stay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Emissions from residential combustion appliances vary significantly depending on the firing behaviours and combustion conditions, in addition to combustion technologies and fuel quality. Although wood pellet combustion in residential heating boilers is efficient, the combustion conditions during start-up and stop phases are not optimal and produce significantly high emissions such as carbon monoxide and hydrocarbon from incomplete combustion. The emissions from the start-up and stop phases of the pellet boilers are not fully taken into account in test methods for ecolabels which primarily focus on emissions during operation on full load and part load. The objective of the thesis is to investigate the emission characteristics during realistic operation of residential wood pellet boilers in order to identify when the major part of the annual emissions occur. Emissions from four residential wood pellet boilers were measured and characterized for three operating phases (start-up, steady and stop). Emissions from realistic operation of combined solar and wood pellet heating systems was continuously measured to investigate the influence of start-up and stop phases on total annual emissions. Measured emission data from the pellet devices were used to build an emission model to predict the annual emission factors from the dynamic operation of the heating system using the simulation software TRNSYS. Start-up emissions are found to vary with ignition type, supply of air and fuel, and time to complete the phase. Stop emissions are influenced by fan operation characteristics and the cleaning routine. Start-up and stop phases under realistic operation conditions contribute 80 – 95% of annual carbon monoxide (CO) emission, 60 – 90% total hydrocarbon (TOC), 10 – 20% of nitrogen oxides (NO), and 30 – 40% particles emissions. Annual emission factors from realistic operation of tested residential heating system with a top fed wood pelt boiler can be between 190 and 400 mg/MJ for the CO emissions, between 60 and 95 mg/MJ for the NO, between 6 and 25 mg/MJ for the TOC, between 30 and 116 mg/MJ for the particulate matter and between 2x10-13 /MJ and 4x10-13 /MJ for the number of particles. If the boiler has the cleaning sequence with compressed air such as in boiler B2, annual CO emission factor can be up to 550 mg/MJ. Average CO, TOC and particles emissions under realistic annual condition were greater than the limits values of two eco labels. These results highlight the importance of start-up and stop phases in annual emission factors (especially CO and TOC). Since a large or dominating part of the annual emissions in real operation arise from the start-up and stop sequences, test methods required by the ecolabels should take these emissions into account. In this way it will encourage the boiler manufacturers to minimize annual emissions. The annual emissions of residential pellet heating system can be reduced by optimizing the number of start-ups of the pellet boiler. It is possible to reduce up to 85% of the number of start-ups by optimizing the system design and its controller such as switching of the boiler pump after it stops, using two temperature sensors for boiler ON/OFF control, optimizing of the positions of the connections to the storage tank, increasing the mixing valve temperature in the boiler circuit and decreasing the pump flow rate. For 85 % reduction of start-ups, 75 % of CO and TOC emission factors were reduced while 13% increase in NO and 15 % increase in particle emissions was observed.