3 resultados para Linear and multilinear programming

em Dalarna University College Electronic Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the study was to see if any relationship between government spending andunemployment could be empirically found. To test if government spending affectsunemployment, a statistical model was applied on data from Sweden. The data was quarterlydata from the year 1994 until 2012, unit-root test were conducted and the variables wheretransformed to its first-difference so ensure stationarity. This transformation changed thevariables to growth rates. This meant that the interpretation deviated a little from the originalgoal. Other studies reviewed indicate that when government spending increases and/or taxesdecreases output increases. Studies show that unemployment decreases when governmentspending/GDP ratio increases. Some studies also indicated that with an already largegovernment sector increasing the spending it could have negative effect on output. The modelwas a VAR-model with unemployment, output, interest rate, taxes and government spending.Also included in the model were a linear and three quarterly dummies. The model used 7lags. The result was not statistically significant for most lags but indicated that as governmentspending growth rate increases holding everything else constant unemployment growth rateincreases. The result for taxes was even less statistically significant and indicates norelationship with unemployment. Post-estimation test indicates that there were problems withnon-normality in the model. So the results should be interpreted with some scepticism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gradual changes in the world development have brought energy issues back into high profile. An ongoing challenge for countries around the world is to balance the development gains against its effects on the environment. The energy management is the key factor of any sustainable development program. All the aspects of development in agriculture, power generation, social welfare and industry in Iran are crucially related to the energy and its revenue. Forecasting end-use natural gas consumption is an important Factor for efficient system operation and a basis for planning decisions. In this thesis, particle swarm optimization (PSO) used to forecast long run natural gas consumption in Iran. Gas consumption data in Iran for the previous 34 years is used to predict the consumption for the coming years. Four linear and nonlinear models proposed and six factors such as Gross Domestic Product (GDP), Population, National Income (NI), Temperature, Consumer Price Index (CPI) and yearly Natural Gas (NG) demand investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis consists of four manuscripts in the area of nonlinear time series econometrics on topics of testing, modeling and forecasting nonlinear common features. The aim of this thesis is to develop new econometric contributions for hypothesis testing and forecasting in these area. Both stationary and nonstationary time series are concerned. A definition of common features is proposed in an appropriate way to each class. Based on the definition, a vector nonlinear time series model with common features is set up for testing for common features. The proposed models are available for forecasting as well after being well specified. The first paper addresses a testing procedure on nonstationary time series. A class of nonlinear cointegration, smooth-transition (ST) cointegration, is examined. The ST cointegration nests the previously developed linear and threshold cointegration. An Ftypetest for examining the ST cointegration is derived when stationary transition variables are imposed rather than nonstationary variables. Later ones drive the test standard, while the former ones make the test nonstandard. This has important implications for empirical work. It is crucial to distinguish between the cases with stationary and nonstationary transition variables so that the correct test can be used. The second and the fourth papers develop testing approaches for stationary time series. In particular, the vector ST autoregressive (VSTAR) model is extended to allow for common nonlinear features (CNFs). These two papers propose a modeling procedure and derive tests for the presence of CNFs. Including model specification using the testing contributions above, the third paper considers forecasting with vector nonlinear time series models and extends the procedures available for univariate nonlinear models. The VSTAR model with CNFs and the ST cointegration model in the previous papers are exemplified in detail,and thereafter illustrated within two corresponding macroeconomic data sets.