1 resultado para Learning Performance
em Dalarna University College Electronic Archive
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (4)
- Academic Research Repository at Institute of Developing Economies (3)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (66)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (14)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (3)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (47)
- Boston University Digital Common (11)
- Brock University, Canada (18)
- Bucknell University Digital Commons - Pensilvania - USA (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- CaltechTHESIS (5)
- Cambridge University Engineering Department Publications Database (25)
- CentAUR: Central Archive University of Reading - UK (42)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (4)
- Cochin University of Science & Technology (CUSAT), India (8)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (31)
- Digital Peer Publishing (2)
- DigitalCommons - The University of Maine Research (2)
- DigitalCommons@The Texas Medical Center (7)
- DigitalCommons@University of Nebraska - Lincoln (4)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (7)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (1)
- Greenwich Academic Literature Archive - UK (5)
- Helda - Digital Repository of University of Helsinki (4)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (26)
- Instituto Politécnico de Viseu (2)
- Instituto Politécnico do Porto, Portugal (6)
- Massachusetts Institute of Technology (13)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (12)
- Open University Netherlands (7)
- Portal de Revistas Científicas Complutenses - Espanha (8)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (53)
- Queensland University of Technology - ePrints Archive (160)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (6)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (33)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (2)
- School of Medicine, Washington University, United States (2)
- Scielo España (1)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (22)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (7)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Universita di Parma (1)
- Universitat de Girona, Spain (4)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (2)
- Université de Montréal (3)
- Université de Montréal, Canada (10)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (1)
- University of Michigan (7)
- University of Queensland eSpace - Australia (28)
- University of Washington (7)
- WestminsterResearch - UK (4)
- Worcester Research and Publications - Worcester Research and Publications - UK (9)
Resumo:
In a global economy, manufacturers mainly compete with cost efficiency of production, as the price of raw materials are similar worldwide. Heavy industry has two big issues to deal with. On the one hand there is lots of data which needs to be analyzed in an effective manner, and on the other hand making big improvements via investments in cooperate structure or new machinery is neither economically nor physically viable. Machine learning offers a promising way for manufacturers to address both these problems as they are in an excellent position to employ learning techniques with their massive resource of historical production data. However, choosing modelling a strategy in this setting is far from trivial and this is the objective of this article. The article investigates characteristics of the most popular classifiers used in industry today. Support Vector Machines, Multilayer Perceptron, Decision Trees, Random Forests, and the meta-algorithms Bagging and Boosting are mainly investigated in this work. Lessons from real-world implementations of these learners are also provided together with future directions when different learners are expected to perform well. The importance of feature selection and relevant selection methods in an industrial setting are further investigated. Performance metrics have also been discussed for the sake of completion.