1 resultado para Large Marangoni Number
em Dalarna University College Electronic Archive
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberdeen University (3)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archive of European Integration (3)
- Aston University Research Archive (23)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (224)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (25)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CentAUR: Central Archive University of Reading - UK (21)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (2)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (14)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (1)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (9)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (7)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (7)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (2)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (5)
- Instituto Politécnico do Porto, Portugal (4)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (2)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- National Center for Biotechnology Information - NCBI (11)
- Nottingham eTheses (2)
- Publishing Network for Geoscientific & Environmental Data (135)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (4)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (4)
- Repositório da Produção Científica e Intelectual da Unicamp (23)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (35)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- Scielo Saúde Pública - SP (9)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad Politécnica de Madrid (11)
- Universidade Complutense de Madrid (3)
- Universidade do Minho (3)
- Universidade dos Açores - Portugal (1)
- Universitat de Girona, Spain (2)
- Université de Lausanne, Switzerland (46)
- Université de Montréal (1)
- Université de Montréal, Canada (3)
- University of Connecticut - USA (2)
- University of Michigan (15)
- University of Queensland eSpace - Australia (244)
Resumo:
In this paper, we propose a new method for solving large scale p-median problem instances based on real data. We compare different approaches in terms of runtime, memory footprint and quality of solutions obtained. In order to test the different methods on real data, we introduce a new benchmark for the p-median problem based on real Swedish data. Because of the size of the problem addressed, up to 1938 candidate nodes, a number of algorithms, both exact and heuristic, are considered. We also propose an improved hybrid version of a genetic algorithm called impGA. Experiments show that impGA behaves as well as other methods for the standard set of medium-size problems taken from Beasley’s benchmark, but produces comparatively good results in terms of quality, runtime and memory footprint on our specific benchmark based on real Swedish data.