4 resultados para LINEAR-REGRESSION
em Dalarna University College Electronic Archive
Resumo:
In this paper, we study the influence of the National Telecom Business Volume by the data in 2008 that have been published in China Statistical Yearbook of Statistics. We illustrate the procedure of modeling “National Telecom Business Volume” on the following eight variables, GDP, Consumption Levels, Retail Sales of Social Consumer Goods Total Renovation Investment, the Local Telephone Exchange Capacity, Mobile Telephone Exchange Capacity, Mobile Phone End Users, and the Local Telephone End Users. The testing of heteroscedasticity and multicollinearity for model evaluation is included. We also consider AIC and BIC criterion to select independent variables, and conclude the result of the factors which are the optimal regression model for the amount of telecommunications business and the relation between independent variables and dependent variable. Based on the final results, we propose several recommendations about how to improve telecommunication services and promote the economic development.
Resumo:
Objective: We present a new evaluation of levodopa plasma concentrations and clinical effects during duodenal infusion of a levodopa/carbidopa gel (Duodopa ) in 12 patients with advanced Parkinson s disease (PD), from a study reported previously (Nyholm et al, Clin Neuropharmacol 2003; 26(3): 156-163). One objective was to investigate in what state of PD we can see the greatest benefits with infusion compared with corresponding oral treatment (Sinemet CR). Another objective was to identify fluctuating response to levodopa and correlate to variables related to disease progression. Methods: We have computed mean absolute error (MAE) and mean squared error (MSE) for the clinical rating from -3 (severe parkinsonism) to +3 (severe dyskinesia) as measures of the clinical state over the treatment periods of the study. Standard deviation (SD) of the rating was used as a measure of response fluctuations. Linear regression and visual inspection of graphs were used to estimate relationships between these measures and variables related to disease progression such as years on levodopa (YLD) or unified PD rating scale part II (UPDRS II).Results: We found that MAE for infusion had a strong linear correlation to YLD (r2=0.80) while the corresponding relation for oral treatment looked more sigmoid, particularly for the more advanced patients (YLD>18).
Resumo:
Accurate speed prediction is a crucial step in the development of a dynamic vehcile activated sign (VAS). A previous study showed that the optimal trigger speed of such signs will need to be pre-determined according to the nature of the site and to the traffic conditions. The objective of this paper is to find an accurate predictive model based on historical traffic speed data to derive the optimal trigger speed for such signs. Adaptive neuro fuzzy (ANFIS), classification and regression tree (CART) and random forest (RF) were developed to predict one step ahead speed during all times of the day. The developed models were evaluated and compared to the results obtained from artificial neural network (ANN), multiple linear regression (MLR) and naïve prediction using traffic speed data collected at four sites located in Sweden. The data were aggregated into two periods, a short term period (5-min) and a long term period (1-hour). The results of this study showed that using RF is a promising method for predicting mean speed in the two proposed periods.. It is concluded that in terms of performance and computational complexity, a simplistic input features to the predicitive model gave a marked increase in the response time of the model whilse still delivering a low prediction error.
Resumo:
BACKGROUND: The role of inflammation and oxidative stress in mild renal impairment in the elderly is not well studied. Accordingly, we aimed at investigating the associations between estimated glomerular filtration rate (eGFR), albumin/creatinine ratio (ACR), and markers of different inflammatory pathways and oxidative stress in a community based cohort of elderly men. FINDINGS: Cystatin C-based GFR, ACR, and biomarkers of cytokine-mediated inflammation (interleukin-6, high-sensitivity C-reactive protein[CRP], serum amyloid A[SAA]), cyclooxygenase-mediated inflammation (urinary prostaglandin F2alpha [PGF2alpha]), and oxidative stress (urinary F2 isoprostanes) were assessed in the Uppsala Longitudinal Study of Adult Men(n = 647, mean age 77 years). RESULTS: In linear regression models adjusting for age, BMI, smoking, blood pressure, LDL-cholesterol, HDL-cholesterol, triglycerides, and treatment with statins, ACE-inhibitors, ASA, and anti-inflammatory agents, eGFR was inversely associated with CRP, interleukin-6, and SAA (beta-coefficient -0.13 to -0.19, p < 0.001 for all), and positively associated with urinary F2-isoprostanes (beta-coefficient 0.09, p = 0.02). In line with this, ACR was positively associated with CRP, interleukin-6, and SAA (beta- coefficient 0.09-0.12, p < 0.02 for all), and negatively associated with urinary F2-isoprostanes (beta-coefficient -0.12, p = 0.002). The associations were similar but with lower regression coefficients in a sub-sample with normal eGFR (>60 ml/min/1.73 m2, n = 514), with the exception that F2-isoprostane and SAA were no longer associated with eGFR. CONCLUSION: Our data indicate that cytokine-mediated inflammation is involved in the early stages of impaired kidney function in the elderly, but that cyclooxygenase-mediated inflammation does not play a role at this stage. The unexpected association between higher eGFR/lower albuminuria and increased F2-isoprostanes in urine merits further studies.