3 resultados para LINEAR-GROUPS
em Dalarna University College Electronic Archive
Resumo:
This paper presents a two-step pseudo likelihood estimation technique for generalized linear mixed models with the random effects being correlated between groups. The core idea is to deal with the intractable integrals in the likelihood function by multivariate Taylor's approximation. The accuracy of the estimation technique is assessed in a Monte-Carlo study. An application of it with a binary response variable is presented using a real data set on credit defaults from two Swedish banks. Thanks to the use of two-step estimation technique, the proposed algorithm outperforms conventional pseudo likelihood algorithms in terms of computational time.
Resumo:
Background: Genetic variation for environmental sensitivity indicates that animals are genetically different in their response to environmental factors. Environmental factors are either identifiable (e.g. temperature) and called macro-environmental or unknown and called micro-environmental. The objectives of this study were to develop a statistical method to estimate genetic parameters for macro- and micro-environmental sensitivities simultaneously, to investigate bias and precision of resulting estimates of genetic parameters and to develop and evaluate use of Akaike’s information criterion using h-likelihood to select the best fitting model. Methods: We assumed that genetic variation in macro- and micro-environmental sensitivities is expressed as genetic variance in the slope of a linear reaction norm and environmental variance, respectively. A reaction norm model to estimate genetic variance for macro-environmental sensitivity was combined with a structural model for residual variance to estimate genetic variance for micro-environmental sensitivity using a double hierarchical generalized linear model in ASReml. Akaike’s information criterion was constructed as model selection criterion using approximated h-likelihood. Populations of sires with large half-sib offspring groups were simulated to investigate bias and precision of estimated genetic parameters. Results: Designs with 100 sires, each with at least 100 offspring, are required to have standard deviations of estimated variances lower than 50% of the true value. When the number of offspring increased, standard deviations of estimates across replicates decreased substantially, especially for genetic variances of macro- and micro-environmental sensitivities. Standard deviations of estimated genetic correlations across replicates were quite large (between 0.1 and 0.4), especially when sires had few offspring. Practically, no bias was observed for estimates of any of the parameters. Using Akaike’s information criterion the true genetic model was selected as the best statistical model in at least 90% of 100 replicates when the number of offspring per sire was 100. Application of the model to lactation milk yield in dairy cattle showed that genetic variance for micro- and macro-environmental sensitivities existed. Conclusion: The algorithm and model selection criterion presented here can contribute to better understand genetic control of macro- and micro-environmental sensitivities. Designs or datasets should have at least 100 sires each with 100 offspring.
Resumo:
BACKGROUND: Annually, 2.8 million neonatal deaths occur worldwide, despite the fact that three-quarters of them could be prevented if available evidence-based interventions were used. Facilitation of community groups has been recognized as a promising method to translate knowledge into practice. In northern Vietnam, the Neonatal Health - Knowledge Into Practice trial evaluated facilitation of community groups (2008-2011) and succeeded in reducing the neonatal mortality rate (adjusted odds ratio, 0.51; 95 % confidence interval 0.30-0.89). The aim of this paper is to report on the process (implementation and mechanism of impact) of this intervention. METHODS: Process data were excerpted from diary information from meetings with facilitators and intervention groups, and from supervisor records of monthly meetings with facilitators. Data were analyzed using descriptive statistics. An evaluation including attributes and skills of facilitators (e.g., group management, communication, and commitment) was performed at the end of the intervention using a six-item instrument. Odds ratios were analyzed, adjusted for cluster randomization using general linear mixed models. RESULTS: To ensure eight active facilitators over 3 years, 11 Women's Union representatives were recruited and trained. Of the 44 intervention groups, composed of health staff and commune stakeholders, 43 completed their activities until the end of the study. In total, 95 % (n = 1508) of the intended monthly meetings with an intervention group and a facilitator were conducted. The overall attendance of intervention group members was 86 %. The groups identified 32 unique problems and implemented 39 unique actions. The identified problems targeted health issues concerning both women and neonates. Actions implemented were mainly communication activities. Communes supported by a group with a facilitator who was rated high on attributes and skills (n = 27) had lower odds of neonatal mortality (odds ratio, 0.37; 95 % confidence interval, 0.19-0.73) than control communes (n = 46). CONCLUSIONS: This evaluation identified several factors that might have influenced the outcomes of the trial: continuity of intervention groups' work, adequate attributes and skills of facilitators, and targeting problems along a continuum of care. Such factors are important to consider in scaling-up efforts.