3 resultados para KX observer

em Dalarna University College Electronic Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The memebers of IEA (International Energy Agency) Task 14 (Advaced Active Solar Systems) met in Rome during January 1993. The latest developments in several countries were presented and discussed during this meeting. This report describes briefly the recent work carried out on small scale systems in the Domestic Hot Water (DHW) working group of Task 14, as reported by the representatives from Canada, Denmark, Germany, Holland and Switzerland. Klaus Lorenz, SERC, attended the meeting as observer and presented our work on small-tube heat exchangers. Several participants expressed their interest. A summary of his presentation is included in this report.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Participation as observer at the meeting of Task 14 of IEA's Solar Heating and Cooling Projects held in Hameln, Germany has led to greater understanding of interesting developments underway in several countries. This will be of use during the development of small scale systems suitable for Swedish conditions. A summary of the work carried out by the working groups within Task 14 is given, with emphasis on the Domestic Hot Water group. Experiences of low-flow systems from several countries are related, and the conclusion is drawn that the maximum theoretical possible increase in performance of 20% has not been achieved due to poor heat exchangers and poor stratification in the storage tanks. Positive developments in connecting tubes and pumps is noted. Further participation as observer in Task 14 meetings is desired, and is looked on favourably by the members of the group. Another conclusion is that SERC should carry on with work on Swedish storage tanks, with emphasis on better stratification and heat exchangers, and possible modelling of system components. Finally a German Do-it-Vourself kit is described and judged in comparison with prefabricated models and Swedish Do-it-Yourself kits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The national railway administrations in Scandinavia, Germany, and Austria mainly resort to manual inspections to control vegetation growth along railway embankments. Manually inspecting railways is slow and time consuming. A more worrying aspect concerns the fact that human observers are often unable to estimate the true cover of vegetation on railway embankments. Further human observers often tend to disagree with each other when more than one observer is engaged for inspection. Lack of proper techniques to identify the true cover of vegetation even result in the excess usage of herbicides; seriously harming the environment and threating the ecology. Hence work in this study has investigated aspects relevant to human variationand agreement to be able to report better inspection routines. This was studied by mainly carrying out two separate yet relevant investigations.First, thirteen observers were separately asked to estimate the vegetation cover in nine imagesacquired (in nadir view) over the railway tracks. All such estimates were compared relatively and an analysis of variance resulted in a significant difference on the observers’ cover estimates (p<0.05). Bearing in difference between the observers, a second follow-up field-study on the railway tracks was initiated and properly investigated. Two railway segments (strata) representingdifferent levels of vegetationwere carefully selected. Five sample plots (each covering an area of one-by-one meter) were randomizedfrom each stratumalong the rails from the aforementioned segments and ten images were acquired in nadir view. Further three observers (with knowledge in the railway maintenance domain) were separately asked to estimate the plant cover by visually examining theplots. Again an analysis of variance resulted in a significant difference on the observers’ cover estimates (p<0.05) confirming the result from the first investigation.The differences in observations are compared against a computer vision algorithm which detects the "true" cover of vegetation in a given image. The true cover is defined as the amount of greenish pixels in each image as detected by the computer vision algorithm. Results achieved through comparison strongly indicate that inconsistency is prevalent among the estimates reported by the observers. Hence, an automated approach reporting the use of computer vision is suggested, thus transferring the manual inspections into objective monitored inspections