2 resultados para JK-PORJPR
em Dalarna University College Electronic Archive
Resumo:
Fan culture is a subculture that has developed explosively on the internet over the last decades. Fans are creating their own films, translations, fiction, fan art, blogs, role play and also various forms that are all based on familiar popular culture creations like TV-series, bestsellers, anime, manga stories and games. In our project, we analyze two of these subculture genres, fan fiction and scanlation. Amateurs, and sometimes professional writers, create new stories by adapting and developing existing storylines and characters from the original. In this way, a "network" of texts occurs, and writers step into an intertextual dialogue with established writers such as JK Rowling (Harry Potter) and Stephanie Meyer (Twilight). Literary reception and creation then merge into a rich reciprocal creative activity which includes comments and feedback from the participators in the community. The critical attitude of the fans regarding quality and the frustration at waiting for the official translation of manga books led to the development of scanlation, which is an amateur translation of manga distributed on the internet. Today, young internet users get involved in conceptual discussions of intertextuality and narrative structures through fan activity. In the case of scanlation, the scanlators practice the skills and techniques of translating in an informal environment. This phenomenon of participatory culture has been observed by scholars and it is concluded that they contribute to the development of a student’s literacy and foreign language skills. Furthermore, there is no doubt that the fandom related to Japanese cultural products such as manga, anime and videogames is one of the strong motives for foreign students to start learning Japanese. This is something to take into pedagogical consideration when we develop web-based courses. Fan fiction and fan culture make it possible to have an intensive transcultural dialogue between participators throughout the world and is of great interest when studying the interaction between formal and informal learning that puts the student in focus
Resumo:
Quadratic assignment problems (QAPs) are commonly solved by heuristic methods, where the optimum is sought iteratively. Heuristics are known to provide good solutions but the quality of the solutions, i.e., the confidence interval of the solution is unknown. This paper uses statistical optimum estimation techniques (SOETs) to assess the quality of Genetic algorithm solutions for QAPs. We examine the functioning of different SOETs regarding biasness, coverage rate and length of interval, and then we compare the SOET lower bound with deterministic ones. The commonly used deterministic bounds are confined to only a few algorithms. We show that, the Jackknife estimators have better performance than Weibull estimators, and when the number of heuristic solutions is as large as 100, higher order JK-estimators perform better than lower order ones. Compared with the deterministic bounds, the SOET lower bound performs significantly better than most deterministic lower bounds and is comparable with the best deterministic ones.