2 resultados para Ionospheric radio wave propagation.

em Dalarna University College Electronic Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Refraction, interference, and diffraction are distinguishing features of wavelike phenomena. Although they are usually associated only with a purely spatial wave-propagation pattern, analogs to interference and diffraction involving the spatio-temporal dynamics of waves in one dimension have been discussed. We complete the triplet of analogies by discussing how spatio-temporal analogs to refraction are exhibited by a quantum particle in one dimension that is scattering off a step barrier. Similarly, birefringence in spacetime occurs for a spin-1/2 particle in a magnetic field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work the adiabatic approximation is applied to the propagation of matter waves in confined geometries like those experimentally realized in recent atom optical experiments. Adiabatic propagation along a channel is assumed not to mix the various transverse modes. Nonadiabatic corrections arise from the potential squeezing and bending. Here we investigate the effect of the former. Detailed calculations of two-dimensional propagation are carried out both exactly and in an adiabatic approximation. This offers the possibility to analyze the validity of adiabaticity criteria. A semiclassical (sc) approach, based on the sc Massey parameter is shown to be inadequate, and the diffraction due to wave effects must be included separately. This brings in the Fresnel parameter well known from optical systems. Using these two parameters, we have an adequate understanding of adiabaticity on the system analyzed. Thus quantum adiabaticity must also take cognizance of the intrinsic diffraction of matter waves.