2 resultados para Interval Linear Systems

em Dalarna University College Electronic Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The diffusion of Concentrating Solar Power Systems (CSP) systems is currently taking place at a much slower pace than photovoltaic (PV) power systems. This is mainly because of the higher present cost of the solar thermal power plants, but also for the time that is needed in order to build them. Though economic attractiveness of different Concentrating technologies varies, still PV power dominates the market. The price of CSP is expected to drop significantly in the near future and wide spread installation of them will follow. The main aim of this project is the creation of different relevant case studies on solar thermal power generation and a comparison betwwen them. The purpose of this detailed comparison is the techno-economic appraisal of a number of CSP systems and the understanding of their behaviour under various boundary conditions. The CSP technologies which will be examined are the Parabolic Trough, the Molten Salt Power Tower, the Linear Fresnel Mirrors and the Dish Stirling. These systems will be appropriatly sized and simulated. All of the simulations aim in the optimization of the particular system. This includes two main issues. The first is the achievement of the lowest possible levelized cost of electricity and the second is the maximization of the annual energy output (kWh). The project also aims in the specification of these factors which affect more the results and more specifically, in what they contribute to the cost reduction or the power generation. Also, photovoltaic systems will be simulated under same boundary conditions to facolitate a comparison between the PV and the CSP systems. Last but not leats, there will be a determination of the system which performs better in each case study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the techniques of likelihood prediction for the generalized linear mixed models. Methods of likelihood prediction is explained through a series of examples; from a classical one to more complicated ones. The examples show, in simple cases, that the likelihood prediction (LP) coincides with already known best frequentist practice such as the best linear unbiased predictor. The paper outlines a way to deal with the covariate uncertainty while producing predictive inference. Using a Poisson error-in-variable generalized linear model, it has been shown that in complicated cases LP produces better results than already know methods.