8 resultados para Internal consistency
em Dalarna University College Electronic Archive
Resumo:
Background. To give birth can be a stressful experience and women cope with thisstress in many different ways and have different personal outcomes. Self-efficacy orconfidence in ability to cope with labour can be considered as an important factoraffecting pregnant women’s motivation of normal childbirth and their interpretation ofthe childbirth event.The aim. The purpose of this study was to test the Chinese short form of theinstrument Childbirth self-efficacy instrument (CBSEI) in Tanzania, that measurepregnant women’s self-confidence and coping abilities during childbirth.Method. The Chinese short form of the CBSEI was used to pilot test the pregnantwomen’s confidence of childbirth to see if the questions were understood in theTanzanian culture. Besides this instrument socio-demographic data was collectedtogether with two open questions asking about attitudes and experiences of childbirth.The instrument was translated into Kiswahili. A sample of 60 pregnant women whowere visiting antenatal clinic (ANC) regularly were asked to participate and with helpfrom midwifes at two ANC places the questionnaires were filled out.Result. The result shows that the validity and reliability of the two subscales OE-16and EE-16 were established. The internal consistency reliability of the two subscaleswere high, suggesting that each of the subscale mean score provides a good overviewof self- reported belief in coping ability for childbirth.The results further show that the instrument, CBSEI in this pilot study is not able toidentify women who need extra support during childbirth.Conclusion. The reliability and validity of information presented in this pilot studysupport the use of the Chinese short form of the CBSEI as a research instrument in theTanzania culture. Further studies are recommended to get a wider understandingabout women’s coping abilities in a culture like Tanzania.
Resumo:
The aim of this study was to conduct an instrument test of the Canadian questionnaire Alberta Context Tool (ACT) version Long-Term care for Swedish conditions. ACT is designed in order to measure the context in the care environment and different behaviours related to the changes in clinical practice. In total, 159 Licensed Practical Nurses (LPNs) and Registered Nurses (RNs) within municipality care of the elderly were included in the survey. The test included the instrument's reliability and face validity.The reliability test was implemented through calculation of Cronbach´s Alpha, and showed internal consistency for five of the scales of the ACT-instrument with Cronbach´s Alpha values ranging between 0,728 and 0,873. However, three dimensions got lower values (0,558 - 0,683).The analysis was carried out with content analysis and carried out for LPNs and RNs in separate groups. The majority of LPNs expressed that it was easy to respond to the questions (56%), while nine percent considered it as difficult. Eleven comments were given about questions that were perceived to be unclear, complicated or contained difficult words. In the RN group only 30 percent considered that the questions were easy to respond to. One third of the RNs considered that part of the questions were unclear, and six RNs expressed also which questions they experienced as unclear. In general, the questions in the ACT were perceived as relevant. The instrument's relevance as a tool to measure contextual factors that influence the implementation of evidence based nursing can also be considered to be determined. By modifying the content in the questionnaire in accordance with what appeared in this survey and to implement yet another test, the instrument should be considered to be relevant for use within Swedish municipality care of the elderly. ACT can be used both as a tool in the work on improvement of clinical practice and as a tool for further research about implementation of evidence based nursing.
Resumo:
Objective To design, develop and set up a web-based system for enabling graphical visualization of upper limb motor performance (ULMP) of Parkinson’s disease (PD) patients to clinicians. Background Sixty-five patients diagnosed with advanced PD have used a test battery, implemented in a touch-screen handheld computer, in their home environment settings over the course of a 3-year clinical study. The test items consisted of objective measures of ULMP through a set of upper limb motor tests (finger to tapping and spiral drawings). For the tapping tests, patients were asked to perform alternate tapping of two buttons as fast and accurate as possible, first using the right hand and then the left hand. The test duration was 20 seconds. For the spiral drawing test, patients traced a pre-drawn Archimedes spiral using the dominant hand, and the test was repeated 3 times per test occasion. In total, the study database consisted of symptom assessments during 10079 test occasions. Methods Visualization of ULMP The web-based system is used by two neurologists for assessing the performance of PD patients during motor tests collected over the course of the said study. The system employs animations, scatter plots and time series graphs to visualize the ULMP of patients to the neurologists. The performance during spiral tests is depicted by animating the three spiral drawings, allowing the neurologists to observe real-time accelerations or hesitations and sharp changes during the actual drawing process. The tapping performance is visualized by displaying different types of graphs. Information presented included distribution of taps over the two buttons, horizontal tap distance vs. time, vertical tap distance vs. time, and tapping reaction time over the test length. Assessments Different scales are utilized by the neurologists to assess the observed impairments. For the spiral drawing performance, the neurologists rated firstly the ‘impairment’ using a 0 (no impairment) – 10 (extremely severe) scale, secondly three kinematic properties: ‘drawing speed’, ‘irregularity’ and ‘hesitation’ using a 0 (normal) – 4 (extremely severe) scale, and thirdly the probable ‘cause’ for the said impairment using 3 choices including Tremor, Bradykinesia/Rigidity and Dyskinesia. For the tapping performance, a 0 (normal) – 4 (extremely severe) scale is used for first rating four tapping properties: ‘tapping speed’, ‘accuracy’, ‘fatigue’, ‘arrhythmia’, and then the ‘global tapping severity’ (GTS). To achieve a common basis for assessment, initially one neurologist (DN) performed preliminary ratings by browsing through the database to collect and rate at least 20 samples of each GTS level and at least 33 samples of each ‘cause’ category. These preliminary ratings were then observed by the two neurologists (DN and PG) to be used as templates for rating of tests afterwards. In another track, the system randomly selected one test occasion per patient and visualized its items, that is tapping and spiral drawings, to the two neurologists. Statistical methods Inter-rater agreements were assessed using weighted Kappa coefficient. The internal consistency of properties of tapping and spiral drawing tests were assessed using Cronbach’s α test. One-way ANOVA test followed by Tukey multiple comparisons test was used to test if mean scores of properties of tapping and spiral drawing tests were different among GTS and ‘cause’ categories, respectively. Results When rating tapping graphs, inter-rater agreements (Kappa) were as follows: GTS (0.61), ‘tapping speed’ (0.89), ‘accuracy’ (0.66), ‘fatigue’ (0.57) and ‘arrhythmia’ (0.33). The poor inter-rater agreement when assessing “arrhythmia” may be as a result of observation of different things in the graphs, among the two raters. When rating animated spirals, both raters had very good agreement when assessing severity of spiral drawings, that is, ‘impairment’ (0.85) and irregularity (0.72). However, there were poor agreements between the two raters when assessing ‘cause’ (0.38) and time-information properties like ‘drawing speed’ (0.25) and ‘hesitation’ (0.21). Tapping properties, that is ‘tapping speed’, ‘accuracy’, ‘fatigue’ and ‘arrhythmia’ had satisfactory internal consistency with a Cronbach’s α coefficient of 0.77. In general, the trends of mean scores of tapping properties worsened with increasing levels of GTS. The mean scores of the four properties were significantly different to each other, only at different levels. In contrast from tapping properties, kinematic properties of spirals, that is ‘drawing speed’, ‘irregularity’ and ‘hesitation’ had a questionable consistency among them with a coefficient of 0.66. Bradykinetic spirals were associated with more impaired speed (mean = 83.7 % worse, P < 0.001) and hesitation (mean = 77.8% worse, P < 0.001), compared to dyskinetic spirals. Both these ‘cause’ categories had similar mean scores of ‘impairment’ and ‘irregularity’. Conclusions In contrast from current approaches used in clinical setting for the assessment of PD symptoms, this system enables clinicians to animate easily and realistically the ULMP of patients who at the same time are at their homes. Dynamic access of visualized motor tests may also be useful when observing and evaluating therapy-related complications such as under- and over-medications. In future, we foresee to utilize these manual ratings for developing and validating computer methods for automating the process of assessing ULMP of PD patients.
Resumo:
This paper presents the development and evaluation of a method for enabling quantitative and automatic scoring of alternating tapping performance of patients with Parkinson’s disease (PD). Ten healthy elderly subjects and 95 patients in different clinical stages of PD have utilized a touch-pad handheld computer to perform alternate tapping tests in their home environments. First, a neurologist used a web-based system to visually assess impairments in four tapping dimensions (‘speed’, ‘accuracy’, ‘fatigue’ and ‘arrhythmia’) and a global tapping severity (GTS). Second, tapping signals were processed with time series analysis and statistical methods to derive 24 quantitative parameters. Third, principal component analysis was used to reduce the dimensions of these parameters and to obtain scores for the four dimensions. Finally, a logistic regression classifier was trained using a 10-fold stratified cross-validation to map the reduced parameters to the corresponding visually assessed GTS scores. Results showed that the computed scores correlated well to visually assessed scores and were significantly different across Unified Parkinson’s Disease Rating Scale scores of upper limb motor performance. In addition, they had good internal consistency, had good ability to discriminate between healthy elderly and patients in different disease stages, had good sensitivity to treatment interventions and could reflect the natural disease progression over time. In conclusion, the automatic method can be useful to objectively assess the tapping performance of PD patients and can be included in telemedicine tools for remote monitoring of tapping.
Resumo:
OBJECTIVES: To develop a method for objective assessment of fine motor timing variability in Parkinson’s disease (PD) patients, using digital spiral data gathered by a touch screen device. BACKGROUND: A retrospective analysis was conducted on data from 105 subjects including65 patients with advanced PD (group A), 15 intermediate patients experiencing motor fluctuations (group I), 15 early stage patients (group S), and 10 healthy elderly subjects (HE) were examined. The subjects were asked to perform repeated upper limb motor tasks by tracing a pre-drawn Archimedes spiral as shown on the screen of the device. The spiral tracing test was performed using an ergonomic pen stylus, using dominant hand. The test was repeated three times per test occasion and the subjects were instructed to complete it within 10 seconds. Digital spiral data including stylus position (x-ycoordinates) and timestamps (milliseconds) were collected and used in subsequent analysis. The total number of observations with the test battery were as follows: Swedish group (n=10079), Italian I group (n=822), Italian S group (n = 811), and HE (n=299). METHODS: The raw spiral data were processed with three data processing methods. To quantify motor timing variability during spiral drawing tasks Approximate Entropy (APEN) method was applied on digitized spiral data. APEN is designed to capture the amount of irregularity or complexity in time series. APEN requires determination of two parameters, namely, the window size and similarity measure. In our work and after experimentation, window size was set to 4 and similarity measure to 0.2 (20% of the standard deviation of the time series). The final score obtained by APEN was normalized by total drawing completion time and used in subsequent analysis. The score generated by this method is hence on denoted APEN. In addition, two more methods were applied on digital spiral data and their scores were used in subsequent analysis. The first method was based on Digital Wavelet Transform and Principal Component Analysis and generated a score representing spiral drawing impairment. The score generated by this method is hence on denoted WAV. The second method was based on standard deviation of frequency filtered drawing velocity. The score generated by this method is hence on denoted SDDV. Linear mixed-effects (LME) models were used to evaluate mean differences of the spiral scores of the three methods across the four subject groups. Test-retest reliability of the three scores was assessed after taking mean of the three possible correlations (Spearman’s rank coefficients) between the three test trials. Internal consistency of the methods was assessed by calculating correlations between their scores. RESULTS: When comparing mean spiral scores between the four subject groups, the APEN scores were different between HE subjects and three patient groups (P=0.626 for S group with 9.9% mean value difference, P=0.089 for I group with 30.2%, and P=0.0019 for A group with 44.1%). However, there were no significant differences in mean scores of the other two methods, except for the WAV between the HE and A groups (P<0.001). WAV and SDDV were highly and significantly correlated to each other with a coefficient of 0.69. However, APEN was not correlated to neither WAV nor SDDV with coefficients of 0.11 and 0.12, respectively. Test-retest reliability coefficients of the three scores were as follows: APEN (0.9), WAV(0.83) and SD-DV (0.55). CONCLUSIONS: The results show that the digital spiral analysis-based objective APEN measure is able to significantly differentiate the healthy subjects from patients at advanced level. In contrast to the other two methods (WAV and SDDV) that are designed to quantify dyskinesias (over-medications), this method can be useful for characterizing Off symptoms in PD. The APEN was not correlated to none of the other two methods indicating that it measures a different construct of upper limb motor function in PD patients than WAV and SDDV. The APEN also had a better test-retest reliability indicating that it is more stable and consistent over time than WAV and SDDV.
Resumo:
Objectives: To translate and evaluate the psychometric properties of the Swedish version of the Fear of Complications Questionnaire. Design: Cross-sectional study design and scale development. Settings: Totally, 469 adults (response rate 63.5%) with Type 1 diabetes completed the questionnaires. Participants were recruited from two university hospitals in Sweden. Participants: Eligible patients were those who met the following inclusion criteria: diagnosed with Type 1 diabetes, diabetes duration of at least 1 year and aged at least 18 years. Methods: The Fear of Complications Questionnaire was translated using the forward-backward translation method. Factor analyses of the questionnaire were performed in two steps using both exploratory and confirmatory factor analysis. Convergent validity was examined using the Hospital Anxiety and Depression Scale and the Fear of Hypoglycaemia Fear Survey. Internal consistency was estimated using Cronbach’s alpha.Results: Exploratory factor analysis supported a two-factor solution. One factor contained three items having to do with fear of kidney-related complications and one factor included the rest of items concerning fear of other diabetes-related complications, as well as fear of complications in general. Internal consistency was high Cronbach’s alpha 0.96. The findings also gave support for convergent validity, with significant positive correlations between measures (r = 0.51 to 0.54). Conclusion: The clinical relevance of the identified two-factor model with a structure of one dominant subdomain may be considered. We suggest, however a one-factor model covering all the items as a relevant basis to assess fear of complications among people with Type 1 diabetes.
Resumo:
Background: Tens of millions of patients worldwide suffer from avoidable disabling injuries and death every year. Measuring the safety climate in health care is an important step in improving patient safety. The most commonly used instrument to measure safety climate is the Safety Attitudes Questionnaire (SAQ). The aim of the present study was to establish the validity and reliability of the translated version of the SAQ. Methods: The SAQ was translated and adapted to the Swedish context. The survey was then carried out with 374 respondents in the operating room (OR) setting. Data was received from three hospitals, a total of 237 responses. Cronbach's alpha and confirmatory factor analysis (CFA) was used to evaluate the reliability and validity of the instrument. Results: The Cronbach's alpha values for each of the factors of the SAQ ranged between 0.59 and 0.83. The CFA and its goodness-of-fit indices (SRMR 0.055, RMSEA 0.043, CFI 0.98) showed good model fit. Intercorrelations between the factors safety climate, teamwork climate, job satisfaction, perceptions of management, and working conditions showed moderate to high correlation with each other. The factor stress recognition had no significant correlation with teamwork climate, perception of management, or job satisfaction. Conclusions: Therefore, the Swedish translation and psychometric testing of the SAQ (OR version) has good construct validity. However, the reliability analysis suggested that some of the items need further refinement to establish sound internal consistency. As suggested by previous research, the SAQ is potentially a useful tool for evaluating safety climate. However, further psychometric testing is required with larger samples to establish the psychometric properties of the instrument for use in Sweden.
Resumo:
Background. There is emerging evidence that context is important for successful transfer of research knowledge into health care practice. The Alberta Context Tool (ACT) is a Canadian developed research-based instrument that assesses 10 modifiable concepts of organizational context considered important for health care professionals’ use of evidence. Swedish and Canadian health care have similarities in terms of organisational and professional aspects, suggesting that the ACT could be used for measuring context in Sweden. This paper reports on the translation of the ACT to Swedish and a testing of preliminary aspects of its validity, acceptability and reliability in Swedish elder care. Methods. The ACT was translated into Swedish and back-translated into English before being pilot tested in ten elder care facilities for response processes validity, acceptability and reliability (Cronbach’s alpha). Subsequently, further modification was performed. Results. In the pilot test, the nurses found the questions easy to respond to (52%) and relevant (65%), yet the questions’ clarity were mainly considered ‘neither clear nor unclear’ (52%). Missing data varied between 0 (0%) and 19 (12%) per item, the most common being 1 missing case per item (15 items). Internal consistency (Cronbach’s Alpha > .70) was reached for 5 out of 8 contextual concepts. Translation and back translation identified 21 linguistic- and semantic related issues and 3 context related deviations, resolved by developers and translators. Conclusion. Modifying an instrument is a detailed process, requiring time and consideration of the linguistic and semantic aspects of the instrument, and understanding of the context where the instrument was developed and where it is to be applied. A team, including the instrument’s developers, translators, and researchers is necessary to ensure a valid translation. This study suggests preliminary validity, reliability and acceptability evidence for the ACT when used with nurses in Swedish elder care.