3 resultados para Internal conbustion engine

em Dalarna University College Electronic Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

“Biosim” is a simulation software which works to simulate the harvesting system.This system is able to design a model for any logistic problem with the combination of several objects so that the artificial system can show the performance of an individual model. The system will also describe the efficiency, possibility to be chosen for real life application of that particular model. So, when any one wish to setup a logistic model like- harvesting system, in real life he/she may be noticed about the suitable prostitution for his plants and factories as well as he/she may get information about the least number of objects, total time to complete the task, total investment required for his model, total amount of noise produced for his establishment in advance. It will produce an advance over view for his model. But “Biosim” is quite slow .As it is an object based system, it takes long time to make its decision. Here the main task is to modify the system so that it can work faster than the previous. So, the main objective of this thesis is to reduce the load of “Biosim” by making some modification of the original system as well as to increase its efficiency. So that the whole system will be faster than the previous one and performs more efficiently when it will be applied in real life. Theconcept is to separate the execution part of ”Biosim” form its graphical engine and run this separated portion in a third generation language platform. C++ is chosenhere as this external platform. After completing the proposed system, results with different models have been observed. The results show that, for any type of plants of fields, for any number of trucks, the proposed system is faster than the original system. The proposed system takes at least 15% less time “Biosim”. The efficiency increase with the complexity of than the original the model. More complex the model, more efficient the proposed system is than original “Biosim”.Depending on the complexity of a model, the proposed system can be 56.53 % faster than the original “Biosim”.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An international standard, ISO/DP 9459-4 has been proposed to establish a uniform standard of quality for small, factory-made solar heating systerns. In this proposal, system components are tested separatelyand total system performance is calculated using system simulations based on component model parameter values validated using the results from the component tests. Another approach is to test the whole system in operation under representative conditions, where the results can be used as a measure of the general system performance. The advantage of system testing of this form is that it is not dependent on simulations and the possible inaccuracies of the models. Its disadvantage is that it is restricted to the boundary conditions for the test. Component testing and system simulation is flexible, but requires an accurate and reliable simulation model.The heat store is a key component conceming system performance. Thus, this work focuses on the storage system consisting store, electrical auxiliary heater, heat exchangers and tempering valve. Four different storage system configurations with a volume of 750 litre were tested in an indoor system test using a six -day test sequence. A store component test and system simulation was carried out on one of the four configurations, applying the proposed standard for stores, ISO/DP 9459-4A. Three newly developed test sequences for intemalload side heat exchangers, not in the proposed ISO standard, were also carried out. The MULTIPORT store model was used for this work. This paper discusses the results of the indoor system test, the store component test, the validation of the store model parameter values and the system simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The Swedish Maternal Health Care Register (MHCR) is a national quality register that has been collecting pregnancy, delivery, and postpartum data since 1999. A substantial revision of the MHCR resulted in a Web-based version of the register in 2010. Although MHCR provides data for health care services and research, the validity of the MHCR data has not been evaluated. This study investigated degree of coverage and internal validity of specific variables in the MHCR and identified possible systematic errors. Methods: This cross-sectional observational study compared pregnancy and delivery data in medical records with corresponding data in the MHCR. The medical record was considered the gold standard. The medical records from nine Swedish hospitals were selected for data extraction. This study compared data from 878 women registered in both medical records and in the MHCR. To evaluate the quality of the initial data extraction, a second data extraction of 150 medical records was performed. Statistical analyses were performed for degree of coverage, agreement and correlation of data, and sensitivity and specificity. Results: Degree of coverage of specified variables in the MHCR varied from 90.0% to 100%. Identical information in both medical records and the MHCR ranged from 71.4% to 99.7%. For more than half of the investigated variables, 95% or more of the information was identical. Sensitivity and specificity were analysed for binary variables. Probable systematic errors were identified for two variables. Conclusions: When comparing data from medical records and data registered in the MHCR, most variables in the MHCR demonstrated good to very good degree of coverage, agreement, and internal validity. Hence, data from the MHCR may be regarded as reliable for research as well as for evaluating, planning, and decision-making with respect to Swedish maternal health care services.