7 resultados para Interactional and collaborative process of knowledge construction
em Dalarna University College Electronic Archive
Resumo:
Current research shows a relationship between healthcare architecture and patient-related Outcomes. The planning and designing of new healthcare environments is a complex process; the needs of the various end-users of the environment must be considered, including the patients, the patients’ significant others, and the staff. The aim of this study was to explore the experiences of healthcare professionals participating in group modelling utilizing system dynamics in the pre-design phase of new healthcare environments. We engaged healthcare professionals in a series of workshops using system dynamics to discuss the planning of healthcare environments in the beginning of a construction, and then interviewed them about their experience. An explorative and qualitative design was used to describe participants’ experiences of participating in the group modelling projects. Participants (n=20) were recruited from a larger intervention study using group modeling and system dynamics in planning and designing projects. The interviews were analysed by qualitative content analysis. Two themes were formed, representing the experiences in the group modeling process: ‘Partaking in the G-M created knowledge and empowerment’and ‘Partaking in the G-M was different from what was expected and required time and skills’. The method can support participants in design teams to focus more on their healthcare organization, their care activities and their aims rather than focusing on detailed layout solutions. This clarification is important when decisions about the design are discussed and prepared and will most likely lead to greater readiness for future building process.
Resumo:
One of the first questions to consider when designing a new roll forming line is the number of forming steps required to produce a profile. The number depends on material properties, the cross-section geometry and tolerance requirements, but the tool designer also wants to minimize the number of forming steps in order to reduce the investment costs for the customer. There are several computer aided engineering systems on the market that can assist the tool designing process. These include more or less simple formulas to predict deformation during forming as well as the number of forming steps. In recent years it has also become possible to use finite element analysis for the design of roll forming processes. The objective of the work presented in this thesis was to answer the following question: How should the roll forming process be designed for complex geometries and/or high strength steels? The work approach included both literature studies as well as experimental and modelling work. The experimental part gave direct insight into the process and was also used to develop and validate models of the process. Starting with simple geometries and standard steels the work progressed to more complex profiles of variable depth and width, made of high strength steels. The results obtained are published in seven papers appended to this thesis. In the first study (see paper 1) a finite element model for investigating the roll forming of a U-profile was built. It was used to investigate the effect on longitudinal peak membrane strain and deformation length when yield strength increases, see paper 2 and 3. The simulations showed that the peak strain decreases whereas the deformation length increases when the yield strength increases. The studies described in paper 4 and 5 measured roll load, roll torque, springback and strain history during the U-profile forming process. The measurement results were used to validate the finite element model in paper 1. The results presented in paper 6 shows that the formability of stainless steel (e.g. AISI 301), that in the cold rolled condition has a large martensite fraction, can be substantially increased by heating the bending zone. The heated area will then become austenitic and ductile before the roll forming. Thanks to the phenomenon of strain induced martensite formation, the steel will regain the martensite content and its strength during the subsequent plastic straining. Finally, a new tooling concept for profiles with variable cross-sections is presented in paper 7. The overall conclusions of the present work are that today, it is possible to successfully develop profiles of complex geometries (3D roll forming) in high strength steels and that finite element simulation can be a useful tool in the design of the roll forming process.
Resumo:
The drying process of linseed oil, oxidized at 80 oC, has been investigated with rheology measurements, Fourier transformation infrared spectroscopy (FTIR), and time of flight secondary ion mass spectrometry (ToF-SIMS). The drying process can be divided into three main steps: initiation, propagation and termination. ToF-SIMS spectra show that the oxidation is initiated at the linolenic (three double bonds) and linoleic fatty acids (two double bonds). ToF-SIMS spectra reveal peaks that can be assigned to ketones, alcohols and hydroperoxides. In this article it is shown that FTIR in combination with ToF-SIMS are well suited tools for investigations of various fatty acid components and reaction products of linseed oil.
Resumo:
The present thesis focuses on characterisation of microstructure and the resulting mechanical and tribological properties of CVD and PVD coatings used in metal cutting applications. These thin and hard coatings are designed to improve the tribological performance of cutting tools which in metal cutting operations may result in improved cutting performance, lower energy consumption, lower production costs and lower impact on the environment. In order to increase the understanding of the tribological behaviour of the coating systems a number of friction and wear tests have been performed and evaluated by post-test microscopy and surface analysis. Much of the work has focused on coating cohesive and adhesive strength, surface fatigue resistance, abrasive wear resistance and friction and wear behaviour under sliding contact and metal cutting conditions. The results show that the CVD deposition of accurate crystallographic phases, e.g. α-Al2O3 rather than κ-Al2O3, textures and multilayer structures can increase the wear resistance of Al2O3. However, the characteristics of the interfaces, e.g. topography as well as interfacial porosity, have a strong impact on coating adhesion and consequently on the resulting properties. Through the deposition of well designed bonding and template layer structures the above problems may be eliminated. Also, the presence of macro-particles in PVD coatings may have a significant impact on the interfacial adhesive strength, increasing the tendency to coating spalling and lowering the surface fatigue resistance, as well as increasing the friction in sliding contacts. Finally, the CVD-Al2O3 coating topography influences the contact conditions in sliding as well as in metal cutting. In summary, the work illuminates the importance of understanding the relationships between deposition process parameters, composition and microstructure, resulting properties and tribological performance of CVD and PVD coatings and how this knowledge can be used to develop the coating materials of tomorrow.
Resumo:
This study examines the question of how language teachers in a highly technologyfriendly university environment view machine translation and the implications that this has for the personal learning environments of students. It brings an activity-theory perspective to the question, examining the ways that the introduction of new tools can disrupt the relationship between different elements in an activity system. This perspective opens up for an investigation of the ways that new tools have the potential to fundamentally alter traditional learning activities. In questionnaires and group discussions, respondents showed general agreement that although use of machine translation by students could be considered cheating, students are bound to use it anyway, and suggested that teachers focus on the kinds of skills students would need when using machine translation and design assignments and exams to practice and assess these skills. The results of the empirical study are used to reflect upon questions of what the roles of teachers and students are in a context where many of the skills that a person needs to be able to interact in a foreign language increasingly can be outsourced to laptops and smartphones.