3 resultados para INJECTION CALIBRATION SYSTEM
em Dalarna University College Electronic Archive
Resumo:
The accurate measurement of a vehicle’s velocity is an essential feature in adaptive vehicle activated sign systems. Since the velocities of the vehicles are acquired from a continuous wave Doppler radar, the data collection becomes challenging. Data accuracy is sensitive to the calibration of the radar on the road. However, clear methodologies for in-field calibration have not been carefully established. The signs are often installed by subjective judgment which results in measurement errors. This paper develops a calibration method based on mining the data collected and matching individual vehicles travelling between two radars. The data was cleaned and prepared in two ways: cleaning and reconstructing. The results showed that the proposed correction factor derived from the cleaned data corresponded well with the experimental factor done on site. In addition, this proposed factor showed superior performance to the one derived from the reconstructed data.
Resumo:
This Thesis project is a part of the research conducted in Solar industry. ABSOLICON Solar Concentrator AB has invented and started production of the prospective solar concentrated system Absolicon X10. The aims of this Thesis project are designing, assembling, calibrating and putting in operation the automatic measurement system intended to evaluate distribution of density of solar radiation in the focal line of the concentrated parabolic reflectors and to measure radiation from the artificial source of light being a calibration-testing tool.On the basis of the requirements of the company’s administration and needs of designing the concentrated reflectors the operation conditions for the Sun-Walker were formulated. As the first step, the complex design of the whole system was made and division on the parts was specified. After the preliminary conducted simulation of the functions and operation conditions of the all parts were formulated.As the next steps, the detailed design of all the parts was made. Most components were ordered from respective companies. Some of the mechanical components were made in the workshop of the company. All parts of the Sun-Walker were assembled and tested. The software part, which controls the Sun-Walker work and conducts measurements of solar irradiation, was created on the LabVIEW basis. To tune and test the software part, the special simulator was designed and assembled.When all parts were assembled in the complete system, the Sun-Walker was tested, calibrated and tuned.
Resumo:
The work presented in this thesis concerns the dimensioning of an Energy Storage System (ESS) which will be used as an energy buffer for a grid-connected PV plant. This ESS should help managing the PV plant to inject electricity into the grid according to the requirements of the grid System Operator. It is desired to obtain a final production not below 1300kWh/kWp with a maximum ESS budget of 0.9€/Wp. The PV plant will be sited in Martinique Island and connected to the main grid. This grid is a small one where the perturbations due clouds in the PV generation are not negligible anymore. A software simulation tool, incorporating a model for the PV-plant production, the ESS and the required injection pattern of electricity into the grid has been developed in MS Excel. This tool has been used to optimize the relevant parameters defining the ESS so that the feed-in of electricity into the grid can be controlled to fulfill the conditions given by the System Operator. The inputs used for this simulation tool are, besides the conditions given by the System Operator on the allowed injection pattern, the production data from a similar PV-plant in a close-by location, and variables for defining the ESS. The PV production data used is from a site with similar climate and weather conditions as for the site on the Martinique Island and hence gives information on the short term insolation variations as well as expected annual electricity production. The ESS capacity and the injected electric energy will be the main figures to compare while doing an economic study of the whole plant. Hence, the Net Present Value, Benefit to Cost method and Pay-back period studies are carried on as dependent of the ESS capacity. The conclusion of this work is that it is possible to obtain the requested injection pattern by using an ESS. The design of the ESS can be made within an acceptable budget. The capacity of ESS to link with the PV system depends on the priorities of the final output characteristics, and it also depends on which economic parameter that is chosen as a priority.