12 resultados para Hybridized Genetic Algorithm

em Dalarna University College Electronic Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Thesis Work will concentrate on a very interesting problem, the Vehicle Routing Problem (VRP). In this problem, customers or cities have to be visited and packages have to be transported to each of them, starting from a basis point on the map. The goal is to solve the transportation problem, to be able to deliver the packages-on time for the customers,-enough package for each Customer,-using the available resources- and – of course - to be so effective as it is possible.Although this problem seems to be very easy to solve with a small number of cities or customers, it is not. In this problem the algorithm have to face with several constraints, for example opening hours, package delivery times, truck capacities, etc. This makes this problem a so called Multi Constraint Optimization Problem (MCOP). What’s more, this problem is intractable with current amount of computational power which is available for most of us. As the number of customers grow, the calculations to be done grows exponential fast, because all constraints have to be solved for each customers and it should not be forgotten that the goal is to find a solution, what is best enough, before the time for the calculation is up. This problem is introduced in the first chapter: form its basics, the Traveling Salesman Problem, using some theoretical and mathematical background it is shown, why is it so hard to optimize this problem, and although it is so hard, and there is no best algorithm known for huge number of customers, why is it a worth to deal with it. Just think about a huge transportation company with ten thousands of trucks, millions of customers: how much money could be saved if we would know the optimal path for all our packages.Although there is no best algorithm is known for this kind of optimization problems, we are trying to give an acceptable solution for it in the second and third chapter, where two algorithms are described: the Genetic Algorithm and the Simulated Annealing. Both of them are based on obtaining the processes of nature and material science. These algorithms will hardly ever be able to find the best solution for the problem, but they are able to give a very good solution in special cases within acceptable calculation time.In these chapters (2nd and 3rd) the Genetic Algorithm and Simulated Annealing is described in details, from their basis in the “real world” through their terminology and finally the basic implementation of them. The work will put a stress on the limits of these algorithms, their advantages and disadvantages, and also the comparison of them to each other.Finally, after all of these theories are shown, a simulation will be executed on an artificial environment of the VRP, with both Simulated Annealing and Genetic Algorithm. They will both solve the same problem in the same environment and are going to be compared to each other. The environment and the implementation are also described here, so as the test results obtained.Finally the possible improvements of these algorithms are discussed, and the work will try to answer the “big” question, “Which algorithm is better?”, if this question even exists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic algorithm has been widely used in different areas of optimization problems. Ithas been combined with renewable energy domain, photovoltaic system, in this thesis.To participate and win the solar boat race, a control program is needed and C++ hasbeen chosen for programming. To implement the program, the mathematic model hasbeen built. Besides, the approaches to calculate the boundaries related to conditionhave been explained. Afterward, the processing of the prediction and real time controlfunction are offered. The program has been simulated and the results proved thatgenetic algorithm is helpful to get the good results but it does not improve the resultstoo much since the particularity of the solar driven boat project such as the limitationof energy production

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The automated timetabling and scheduling is one of the hardest problem areas. This isbecause of constraints and satisfying those constraints to get the feasible and optimizedschedule, and it is already proved as an NP Complete (1) [1]. The basic idea behind this studyis to investigate the performance of Genetic Algorithm on general scheduling problem underpredefined constraints and check the validity of results, and then having comparative analysiswith other available approaches like Tabu search, simulated annealing, direct and indirectheuristics [2] and expert system. It is observed that Genetic Algorithm is good solutiontechnique for solving such problems and later analysis will prove this argument. The programis written in C++ and analysis is done by using variation in various parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The field of automated timetabling and scheduling meeting all the requirementsthat we call constraints is always difficult task and already proved as NPComplete. The idea behind my research is to implement Genetic Algorithm ongeneral scheduling problem under predefined constraints and check the validityof results, and then I will explain the possible usage of other approaches likeexpert systems, direct heuristics, network flows, simulated annealing and someother approaches. It is observed that Genetic Algorithm is good solutiontechnique for solving such problems. The program written in C++ and analysisis done with using various tools explained in details later.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Quadratic assignment problems (QAPs) are commonly solved by heuristic methods, where the optimum is sought iteratively. Heuristics are known to provide good solutions but the quality of the solutions, i.e., the confidence interval of the solution is unknown. This paper uses statistical optimum estimation techniques (SOETs) to assess the quality of Genetic algorithm solutions for QAPs. We examine the functioning of different SOETs regarding biasness, coverage rate and length of interval, and then we compare the SOET lower bound with deterministic ones. The commonly used deterministic bounds are confined to only a few algorithms. We show that, the Jackknife estimators have better performance than Weibull estimators, and when the number of heuristic solutions is as large as 100, higher order JK-estimators perform better than lower order ones. Compared with the deterministic bounds, the SOET lower bound performs significantly better than most deterministic lower bounds and is comparable with the best deterministic ones. 

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Genetic algorithms are commonly used to solve combinatorial optimizationproblems. The implementation evolves using genetic operators (crossover, mutation,selection, etc.). Anyway, genetic algorithms like some other methods have parameters(population size, probabilities of crossover and mutation) which need to be tune orchosen.In this paper, our project is based on an existing hybrid genetic algorithmworking on the multiprocessor scheduling problem. We propose a hybrid Fuzzy-Genetic Algorithm (FLGA) approach to solve the multiprocessor scheduling problem.The algorithm consists in adding a fuzzy logic controller to control and tunedynamically different parameters (probabilities of crossover and mutation), in anattempt to improve the algorithm performance. For this purpose, we will design afuzzy logic controller based on fuzzy rules to control the probabilities of crossoverand mutation. Compared with the Standard Genetic Algorithm (SGA), the resultsclearly demonstrate that the FLGA method performs significantly better.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nowadays in the world of mass consumption there is big demand for distributioncenters of bigger size. Managing such a center is a very complex and difficult taskregarding to the different processes and factors in a usual warehouse when we want tominimize the labor costs. Most of the workers’ working time is spent with travelingbetween source and destination points which cause deadheading. Even if a worker knowsthe structure of a warehouse well and because of that he or she can find the shortest pathbetween two points, it is still not guaranteed that there won’t be long traveling timebetween the locations of two consecutive tasks. We need optimal assignments betweentasks and workers.In the scientific literature Generalized Assignment Problem (GAP) is a wellknownproblem which deals with the assignment of m workers to n tasks consideringseveral constraints. The primary purpose of my thesis project was to choose a heuristics(genetic algorithm, tabu search or ant colony optimization) to be implemented into SAPExtended Warehouse Management (SAP EWM) by with task assignment will be moreeffective between tasks and resources.After system analysis I had to realize that due different constraints and businessdemands only 1:1 assingments are allowed in SAP EWM. Because of that I had to use adifferent and simpler approach – instead of the introduced heuristics – which could gainbetter assignments during the test phase in several cases. In the thesis I described indetails what ware the most important questions and problems which emerged during theplanning of my optimized assignment method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since the last decade the problem of surface inspection has been receiving great attention from the scientific community, the quality control and the maintenance of products are key points in several industrial applications.The railway associations spent much money to check the railway infrastructure. The railway infrastructure is a particular field in which the periodical surface inspection can help the operator to prevent critical situations. The maintenance and monitoring of this infrastructure is an important aspect for railway association.That is why the surface inspection of railway also makes importance to the railroad authority to investigate track components, identify problems and finding out the way that how to solve these problems. In railway industry, usually the problems find in railway sleepers, overhead, fastener, rail head, switching and crossing and in ballast section as well. In this thesis work, I have reviewed some research papers based on AI techniques together with NDT techniques which are able to collect data from the test object without making any damage. The research works which I have reviewed and demonstrated that by adopting the AI based system, it is almost possible to solve all the problems and this system is very much reliable and efficient for diagnose problems of this transportation domain. I have reviewed solutions provided by different companies based on AI techniques, their products and reviewed some white papers provided by some of those companies. AI based techniques likemachine vision, stereo vision, laser based techniques and neural network are used in most cases to solve the problems which are performed by the railway engineers.The problems in railway handled by the AI based techniques performed by NDT approach which is a very broad, interdisciplinary field that plays a critical role in assuring that structural components and systems perform their function in a reliable and cost effective fashion. The NDT approach ensures the uniformity, quality and serviceability of materials without causing any damage of that materials is being tested. This testing methods use some way to test product like, Visual and Optical testing, Radiography, Magnetic particle testing, Ultrasonic testing, Penetrate testing, electro mechanic testing and acoustic emission testing etc. The inspection procedure has done periodically because of better maintenance. This inspection procedure done by the railway engineers manually with the aid of AI based techniques.The main idea of thesis work is to demonstrate how the problems can be reduced of thistransportation area based on the works done by different researchers and companies. And I have also provided some ideas and comments according to those works and trying to provide some proposal to use better inspection method where it is needed.The scope of this thesis work is automatic interpretation of data from NDT, with the goal of detecting flaws accurately and efficiently. AI techniques such as neural networks, machine vision, knowledge-based systems and fuzzy logic were applied to a wide spectrum of problems in this area. Another scope is to provide an insight into possible research methods concerning railway sleeper, fastener, ballast and overhead inspection by automatic interpretation of data.In this thesis work, I have discussed about problems which are arise in railway sleepers,fastener, and overhead and ballasted track. For this reason I have reviewed some research papers related with these areas and demonstrated how their systems works and the results of those systems. After all the demonstrations were taking place of the advantages of using AI techniques in contrast with those manual systems exist previously.This work aims to summarize the findings of a large number of research papers deploying artificial intelligence (AI) techniques for the automatic interpretation of data from nondestructive testing (NDT). Problems in rail transport domain are mainly discussed in this work. The overall work of this paper goes to the inspection of railway sleepers, fastener, ballast and overhead.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The context of this report and the IRIDIA laboratory are described in the preface. Evolutionary Robotics and the box-pushing task are presented in the introduction.The building of a test system supporting Evolutionary Robotics experiments is then detailed. This system is made of a robot simulator and a Genetic Algorithm. It is used to explore the possibility of evolving box-pushing behaviours. The bootstrapping problem is explained, and a novel approach for dealing with it is proposed, with results presented.Finally, ideas for extending this approach are presented in the conclusion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we propose a new method for solving large scale p-median problem instances based on real data. We compare different approaches in terms of runtime, memory footprint and quality of solutions obtained. In order to test the different methods on real data, we introduce a new benchmark for the p-median problem based on real Swedish data. Because of the size of the problem addressed, up to 1938 candidate nodes, a number of algorithms, both exact and heuristic, are considered. We also propose an improved hybrid version of a genetic algorithm called impGA. Experiments show that impGA behaves as well as other methods for the standard set of medium-size problems taken from Beasley’s benchmark, but produces comparatively good results in terms of quality, runtime and memory footprint on our specific benchmark based on real Swedish data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bin planning (arrangements) is a key factor in the timber industry. Improper planning of the storage bins may lead to inefficient transportation of resources, which threaten the overall efficiency and thereby limit the profit margins of sawmills. To address this challenge, a simulation model has been developed. However, as numerous alternatives are available for arranging bins, simulating all possibilities will take an enormous amount of time and it is computationally infeasible. A discrete-event simulation model incorporating meta-heuristic algorithms has therefore been investigated in this study. Preliminary investigations indicate that the results achieved by GA based simulation model are promising and better than the other meta-heuristic algorithm. Further, a sensitivity analysis has been done on the GA based optimal arrangement which contributes to gaining insights and knowledge about the real system that ultimately leads to improved and enhanced efficiency in sawmill yards. It is expected that the results achieved in the work will support timber industries in making optimal decisions with respect to arrangement of storage bins in a sawmill yard.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The quality of a heuristic solution to a NP-hard combinatorial problem is hard to assess. A few studies have advocated and tested statistical bounds as a method for assessment. These studies indicate that statistical bounds are superior to the more widely known and used deterministic bounds. However, the previous studies have been limited to a few metaheuristics and combinatorial problems and, hence, the general performance of statistical bounds in combinatorial optimization remains an open question. This work complements the existing literature on statistical bounds by testing them on the metaheuristic Greedy Randomized Adaptive Search Procedures (GRASP) and four combinatorial problems. Our findings confirm previous results that statistical bounds are reliable for the p-median problem, while we note that they also seem reliable for the set covering problem. For the quadratic assignment problem, the statistical bounds has previously been found reliable when obtained from the Genetic algorithm whereas in this work they found less reliable. Finally, we provide statistical bounds to four 2-path network design problem instances for which the optimum is currently unknown.