2 resultados para Hybrid combined cycle

em Dalarna University College Electronic Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The pulp- and paper production is a very energy intensive industry sector. Both Sweden and the U.S. are major pulpandpaper producers. This report examines the energy and the CO2-emission connected with the pulp- and paperindustry for the two countries from a lifecycle perspective.New technologies make it possible to increase the electricity production in the integrated pulp- andpaper mill through black liquor gasification and a combined cycle (BLGCC). That way, the mill canproduce excess electricity, which can be sold and replace electricity produced in power plants. In thisprocess the by-products that are formed at the pulp-making process is used as fuel to produce electricity.In pulp- and paper mills today the technology for generating energy from the by-product in aTomlinson boiler is not as efficient as it could be compared to the BLGCC technology. Scenarios havebeen designed to investigate the results from using the BLGCC technique using a life cycle analysis.Two scenarios are being represented by a 1994 mill in the U.S. and a 1994 mill in Sweden.The scenariosare based on the average energy intensity of pulp- and paper mills as operating in 1994 in the U.S.and Sweden respectively. The two other scenarios are constituted by a »reference mill« in the U.S. andSweden using state-of-the-art technology. We investigate the impact of varying recycling rates and totalenergy use and CO2-emissions from the production of printing and writing paper. To economize withthe wood and that way save trees, we can use the trees that are replaced by recycling in a biomassgasification combined cycle (BIGCC) to produce electricity in a power station. This produces extra electricitywith a lower CO2 intensity than electricity generated by, for example, coal-fired power plants.The lifecycle analysis in this thesis also includes the use of waste treatment in the paper lifecycle. Both Sweden and theU.S. are countries that recycle paper. Still there is a lot of paper waste, this paper is a part of the countries municipalsolid waste (MSW). A lot of the MSW is landfilled, but parts of it are incinerated to extract electricity. The thesis hasdesigned special scenarios for the use of MSW in the lifecycle analysis.This report is studying and comparing two different countries and two different efficiencies on theBLGCC in four different scenarios. This gives a wide survey and points to essential parameters to specificallyreflect on, when making assumptions in a lifecycle analysis. The report shows that there arethree key parameters that have to be carefully considered when making a lifecycle analysis of wood inan energy and CO2-emission perspective in the pulp- and paper mill in the U.S. and in Sweden. First,there is the energy efficiency in the pulp- and paper mill, then the efficiency of the BLGCC and last theCO2 intensity of the electricity displaced by BIGCC or BLGCC generatedelectricity. It also show that with the current technology that we havetoday, it is possible to produce CO2 free paper with a waste paper amountup to 30%. The thesis discusses the system boundaries and the assumptions.Further and more detailed research, including amongst others thesystem boundaries and forestry, is recommended for more specificanswers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic system test methods for heating systems were developed and applied by the institutes SERC and SP from Sweden, INES from France and SPF from Switzerland already before the MacSheep project started. These test methods followed the same principle: a complete heating system – including heat generators, storage, control etc., is installed on the test rig; the test rig software and hardware simulates and emulates the heat load for space heating and domestic hot water of a single family house, while the unit under test has to act autonomously to cover the heat demand during a representative test cycle. Within the work package 2 of the MacSheep project these similar – but different – test methods were harmonized and improved. The work undertaken includes:  • Harmonization of the physical boundaries of the unit under test. • Harmonization of the boundary conditions of climate and load. • Definition of an approach to reach identical space heat load in combination with an autonomous control of the space heat distribution by the unit under test. • Derivation and validation of new six day and a twelve day test profiles for direct extrapolation of test results.   The new harmonized test method combines the advantages of the different methods that existed before the MacSheep project. The new method is a benchmark test, which means that the load for space heating and domestic hot water preparation will be identical for all tested systems, and that the result is representative for the performance of the system over a whole year. Thus, no modelling and simulation of the tested system is needed in order to obtain the benchmark results for a yearly cycle. The method is thus also applicable to products for which simulation models are not available yet. Some of the advantages of the new whole system test method and performance rating compared to the testing and energy rating of single components are:  • Interaction between the different components of a heating system, e.g. storage, solar collector circuit, heat pump, control, etc. are included and evaluated in this test. • Dynamic effects are included and influence the result just as they influence the annual performance in the field. • Heat losses are influencing the results in a more realistic way, since they are evaluated under "real installed" and representative part-load conditions rather than under single component steady state conditions.   The described method is also suited for the development process of new systems, where it replaces time-consuming and costly field testing with the advantage of a higher accuracy of the measured data (compared to the typically used measurement equipment in field tests) and identical, thus comparable boundary conditions. Thus, the method can be used for system optimization in the test bench under realistic operative conditions, i.e. under relevant operating environment in the lab.   This report describes the physical boundaries of the tested systems, as well as the test procedures and the requirements for both the unit under test and the test facility. The new six day and twelve day test profiles are also described as are the validation results.