22 resultados para Grid-Connected PV

em Dalarna University College Electronic Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work presented in this thesis concerns the dimensioning of an Energy Storage System (ESS) which will be used as an energy buffer for a grid-connected PV plant. This ESS should help managing the PV plant to inject electricity into the grid according to the requirements of the grid System Operator. It is desired to obtain a final production not below 1300kWh/kWp with a maximum ESS budget of 0.9€/Wp. The PV plant will be sited in Martinique Island and connected to the main grid. This grid is a small one where the perturbations due clouds in the PV generation are not negligible anymore. A software simulation tool, incorporating a model for the PV-plant production, the ESS and the required injection pattern of electricity into the grid has been developed in MS Excel. This tool has been used to optimize the relevant parameters defining the ESS so that the feed-in of electricity into the grid can be controlled to fulfill the conditions given by the System Operator. The inputs used for this simulation tool are, besides the conditions given by the System Operator on the allowed injection pattern, the production data from a similar PV-plant in a close-by location, and variables for defining the ESS. The PV production data used is from a site with similar climate and weather conditions as for the site on the Martinique Island and hence gives information on the short term insolation variations as well as expected annual electricity production. The ESS capacity and the injected electric energy will be the main figures to compare while doing an economic study of the whole plant. Hence, the Net Present Value, Benefit to Cost method and Pay-back period studies are carried on as dependent of the ESS capacity. The conclusion of this work is that it is possible to obtain the requested injection pattern by using an ESS. The design of the ESS can be made within an acceptable budget. The capacity of ESS to link with the PV system depends on the priorities of the final output characteristics, and it also depends on which economic parameter that is chosen as a priority.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A test and demonstration facility for PV and PV hybrid systems and system components has been designed and installed at Dalarna University in Sweden. The facility allows studies of complete PV systems or single components in a range of 0.1-10 kW. The facility includes two grid-connected PV systems, a PV Hybrid off-grid system, three emulators and the necessary measurement and control equipment. Tests can be done manually or automatically through programmed test procedures controlled that will be implemented in Labview. The facility shall be used by researchers, professionals of the industry and engineering students.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A common problem when planning large free field PV-plants is optimizing the ground occupation ratio while maintaining low shading losses. Due to the complexity of this task, several PV-plants have been built using various configurations. In order to compare the shading losses of different PV technologies and array designs, empirical performance data of five free field PV-plants operating in Germany was analyzed. The data collected comprised 140 winter days from October 2011 until March 2012. The relative shading losses were estimated by comparing the energy output of selected arrays in the front rows (shading-free) against that of shaded arrays in the back rows of the same plant. The results showed that landscape mounting with mc-Si PV-modules yielded significantly better results than portrait one. With CIGS modules, making cross-table strings using the lower modules was not beneficial as expected and had more losses than a one-string-per-table layout. Parallel substrings with CdTe showed relatively low losses. Among the two CdTe products analyzed, none showed a significantly better performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis focuses on using photovoltaic produced electricity to power air conditioners in a tropical climate. The study takes place in Surabaya, Indonesia at two different locations the classroom, located at the UBAYA campus and the home office, 10 km away. Indonesia has an average solar irradiation of about 4.8 kWh/m²/day (PWC Indonesia, 2013) which is for ideal conditions for these tests. At the home office, tests were conducted on different photovoltaic systems. A series of measuring devices recorded the performance of the 800 W PV system and the consumption of the 1.35 kW air conditioner (cooling capacity). To have an off grid system many of the components need to be oversized. The inverter has to be oversized to meet the startup load of the air conditioner, which can be 3 to 8 times the operating power (Rozenblat, 2013). High energy consumption of the air conditioner would require a large battery storage to provide one day of autonomy. The PV systems output must at least match the consumption of the air conditioner. A grid connect system provides a much better solution with the 800 W PV system providing 80 % of the 3.5 kWh load of the air conditioner, the other 20 % coming from the grid during periods of low irradiation. In this system the startup load is provided by the grid so the inverter does not need to be oversized. With the grid-connected system, the PV panel’s production does not need to match the consumption of the air conditioner, although a smaller PV array will mean a smaller percentage of the load will be covered by PV. Using the results from the home office tests and results from measurements made in the classroom. Two different PV systems (8 kW and 12 kW) were simulated to power both the current air conditioners (COP 2.78) and new air conditioners (COP 4.0). The payback period of the systems can vary greatly depending on if a feed in tariff is awarded or not. If the feed in tariff is awarded the best system is the 12 kW system, with a payback period of 4.3 years and a levelized cost of energy at -3,334 IDR/kWh. If the feed in tariff is not granted then the 8 kW system is the best choice with a lower payback period and lower levelized cost of energy than the 12 kW system under the same conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this thesis the solar part of a large grid-connected photovoltaic system design has been done. The main purpose was to size and optimize the system and to present figures helping to evaluate the prospective project rationality, which can potentially be constructed on a contaminated area in Falun. The methodology consisted in PV market study and component selection, site analysis and defining suitable area for solar installation; and system configuration optimization based on PVsyst simulations and Levelized Cost of Energy calculations. The procedure was mainly divided on two parts, preliminary and detailed sizing. In the first part the objective was complex, which included the investigation of the most profitable component combination and system optimization due to tilt and row distance. It was done by simulating systems with different components and orientations, which were sized for the same 100kW inverter in order to make a fair comparison. For each simulated result a simplified LCOE calculation procedure was applied. The main results of this part show that with the price of 0.43 €/Wp thin-film modules were the most cost effective solution for the case with a great advantage over crystalline type in terms of financial attractiveness. From the results of the preliminary study it was possible to select the optimal system configuration, which was used in the detailed sizing as a starting point. In this part the PVsyst simulations were run, which included full scale system design considering near shadings created by factory buildings. Additionally, more complex procedure of LCOE calculation has been used here considered insurances, maintenance, time value of money and possible cost reduction due to the system size. Two system options were proposed in final results; both cover the same area of 66000 m2. The first one represents an ordinary South faced design with 1.1 MW nominal power, which was optimized for the highest performance. According to PVsyst simulations, this system should produce 1108 MWh/year with the initial investment of 835,000 € and 0.056 €/kWh LCOE. The second option has an alternative East-West orientation, which allows to cover 80% of occupied ground and consequently have 6.6 MW PV nominal power. The system produces 5388 MWh/year costs about 4500,000 € and delivers electricity with the same price of 0.056 €/kWh. Even though the EW solution has 20% lower specific energy production, it benefits mainly from lower relative costs for inverters, mounting and annual maintenance expenses. After analyzing the performance results, among the two alternatives none of the systems showed a clear superiority so there was no optimal system proposed. Both, South and East-West solutions have own advantages and disadvantages in terms of energy production profile, configuration, installation and maintenance. Furthermore, the uncertainty due to cost figures assumptions restricted the results veracity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PV-Wind-Hybrid systems for stand-alone applications have the potential to be more cost efficient compared to PV-alone systems. The two energy sources can, to some extent, compensate each others minima. The combination of solar and wind should be especially favorable for locations at high latitudes such as Sweden with a very uneven distribution of solar radiation during the year. In this article PV-Wind-Hybrid systems have been studied for 11 locations in Sweden. These systems supply the household electricity for single family houses. The aim was to evaluate the system costs, the cost of energy generated by the PV-Wind-Hybrid systems, the effect of the load size and to what extent the combination of these two energy sources can reduce the costs compared to a PV-alone system. The study has been performed with the simulation tool HOMER developed by the National Renewable Energy Laboratory (NREL) for techno-economical feasibility studies of hybrid systems. The results from HOMER show that the net present costs (NPC) for a hybrid system designed for an annual load of 6000 kWh with a capacity shortage of 10% will vary between $48,000 and $87,000. Sizing the system for a load of 1800 kWh/year will give a NPC of $17,000 for the best and $33,000 for the worst location. PV-Wind-Hybrid systems are for all locations more cost effective compared to PV-alone systems. Using a Hybrid system is reducing the NPC for Borlänge by 36% and for Lund by 64%. The cost per kWh electricity varies between $1.4 for the worst location and $0.9 for the best location if a PV-Wind-Hybrid system is used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A one year data analysis for a micro PV-Wind hybrid system (0.52 kW + 1 kW), installed in Borlänge/Sweden is presented in this paper. The system performance was evaluated according the guidelines of the IEC 61724 standard. The parameters obtained allow a comparison with similar systems. The measurement data are also used to evaluate the sizing and operation of the hybrid system. In addition, the system was modelled in HOMER to study sizing options.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The demand for cooling and air-conditioning of building is increasingly ever growing. This increase is mostly due to population and economic growth in developing countries, and also desire for a higher quality of thermal comfort. Increase in the use of conventional cooling systems results in larger carbon footprint and more greenhouse gases considering their higher electricity consumption, and it occasionally creates peaks in electricity demand from power supply grid. Solar energy as a renewable energy source is an alternative to drive the cooling machines since the cooling load is generally high when solar radiation is high. This thesis examines the performance of PV/T solar collector manufactured by Solarus company in a solar cooling system for an office building in Dubai, New Delhi, Los Angeles and Cape Town. The study is carried out by analyzing climate data and the requirements for thermal comfort in office buildings. Cooling systems strongly depend on weather conditions and local climate. Cooling load of buildings depend on many parameters such as ambient temperature, indoor comfort temperature, solar gain to the building and internal gains including; number of occupant and electrical devices. The simulations were carried out by selecting a suitable thermally driven chiller and modeling it with PV/T solar collector in Polysun software. Fractional primary energy saving and solar fraction were introduced as key figures of the project to evaluate the performance of cooling system. Several parametric studies and simulations were determined according to PV/T aperture area and hot water storage tank volume. The fractional primary energy saving analysis revealed that thermally driven chillers, particularly adsorption chillers are not suitable to be utilizing in small size of solar cooling systems in hot and tropic climates such as Dubai and New Delhi. Adsorption chillers require more thermal energy to meet the cooling load in hot and dry climates. The adsorption chillers operate in their full capacity and in higher coefficient of performance when they run in a moderate climate since they can properly reject the exhaust heat. The simulation results also indicated that PV/T solar collector have higher efficiency in warmer climates, however it requires a larger size of PV/T collectors to supply the thermally driven chillers for providing cooling in hot climates. Therefore using an electrical chiller as backup gives much better results in terms of primary energy savings, since PV/T electrical production also can be used for backup electrical chiller in a net metering mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy efficiency and renewable energy use are two main priorities leading to industrial sustainability nowadays according to European Steel Technology Platform (ESTP). Modernization efforts can be done by industries to improve energy consumptions of the production lines. These days, steel making industrial applications are energy and emission intensive. It was estimated that over the past years, energy consumption and corresponding CO2 generation has increased steadily reaching approximately 338.15 parts per million in august 2010 [1]. These kinds of facts and statistics have introduced a lot of room for improvement in energy efficiency for industrial applications through modernization and use of renewable energy sources such as solar Photovoltaic Systems (PV).The purpose of this thesis work is to make a preliminary design and simulation of the solar photovoltaic system which would attempt to cover the energy demand of the initial part of the pickling line hydraulic system at the SSAB steel plant. For this purpose, the energy consumptions of this hydraulic system would be studied and evaluated and a general analysis of the hydraulic and control components performance would be done which would yield a proper set of guidelines contributing towards future energy savings. The results of the energy efficiency analysis showed that the initial part of the pickling line hydraulic system worked with a low efficiency of 3.3%. Results of general analysis showed that hydraulic accumulators of 650 liter size should be used by the initial part pickling line system in combination with a one pump delivery of 100 l/min. Based on this, one PV system can deliver energy to an AC motor-pump set covering 17.6% of total energy and another PV system can supply a DC hydraulic pump substituting 26.7% of the demand. The first system used 290 m2 area of the roof and was sized as 40 kWp, the second used 109 m2 and was sized as 15.2 kWp. It was concluded that the reason for the low efficiency was the oversized design of the system. Incremental modernization efforts could help to improve the hydraulic system energy efficiency and make the design of the solar photovoltaic system realistically possible. Two types of PV systems where analyzed in the thesis work. A method was found calculating the load simulation sequence based on the energy efficiency studies to help in the PV system simulations. Hydraulic accumulators integrated into the pickling line worked as energy storage when being charged by the PV system as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of measurements on the performance of solar cell string modules with low-concentrating CPC reflectors with a concentration factor C ˜ 4X have been carried out. To minimise the reduction in efficiency due to high cell temperatures, the modules were cooled. Four different way of cooling were tested:1) The thermal mass of the module was increased, 2) passive air cooling was used by introducing a small air gap between the module and the reflector, 3) the PV cells were cooled by a large cooling fin, 4) the module was actively cooled by circulating cold water on the back. The best performance was given with the actively cooled PV module which gave 2,2 times the output from a reference module while for the output from the module with a cooling fin the value was 1,8.Active cooling is also interesting due to the possibility of co-generation of thermal and electrical energy which is discussed in the paper. Simulations, based on climate data from Stockholm, latitude 59.4°N, show that there are good prospects for producing useful temperatures of the cooling fluid with only a slightly reduced performance of the electrical fraction of the PV thermal hybrid system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of the work is to develop a cost effective semistationary CPC concentrator for a string PV-module. A novel method of using annual irradiation distribution diagram projected in a north-south vertical plane is developed. This method allows us easily to determine the optimum acceptance angle of the concentrator and the required number of annual tilts. Concentration ranges of 2-5x are investigated with corresponding acceptance angles between 5 and 15°. The concentrator should be tilted 2-6 times per year. Experiments has been performed on a string module of 10 cells connected in a series and equipped with a compound parabolic concentrator with C = 3.3X. Measurement show that the output will increase with a factor of 2-2.5 for the concentrator module, compared to a reference module without concentrator. If very cheap aluminium reflectors are used the costs for the PV-module can be decreased nearly by a factor of two.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of the calculations was to estimate the most suitable slopes and azimuths for three different positions per day of a solar panel in order to obtain the most possible energy from the PV panel compared with a stationary PV panel. The calculations were made in the computer program PV F-CHART.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This master thesis presents a new technological combination of two environmentally friendly sources of energy in order to provide DHW, and space heating. Solar energy is used for space heating, and DHW production using PV modules which supply direct current directly to electrical heating elements inside a water storage tank. On the other hand a GSHP system as another source of renewable energy provides heat in the water storage tank of the system in order to provide DHW and space heating. These two sources of renewable energy have been combined in this case-study in order to obtain a more efficient system, which will reduce the amount of electricity consumed by the GSHP system.The key aim of this study is to make simulations, and calculations of the amount ofelectrical energy that can be expected to be produced by a certain amount of PV modules that are already assembled on a house in Vantaa, southern Finland. This energy is then intended to be used as a complement to produce hot water in the heating system of the house beside the original GSHP system. Thus the amount of electrical energy purchased from the grid should be reduced and the compressor in the GSHP would need fewer starts which would reduce the heating cost of the GSHP system for space heating and providing hot water.The produced energy by the PV arrays in three different circuits will be charged directly to three electrical heating elements in the water storage tank of the existing system to satisfy the demand of the heating elements. The excess energy can be used to heat the water in the water storage tank to some extent which leads to a reduction of electricity consumption by the different components of the GSHP system.To increase the efficiency of the existing hybrid system, optimization of different PV configurations have been accomplished, and the results are compared. Optimization of the arrays in southern and western walls shows a DC power increase of 298 kWh/year compared with the existing PV configurations. Comparing the results from the optimization of the arrays on the western roof if the intention is to feed AC power to the components of the GSHP system shows a yearly AC power production of 1,646 kWh.This is with the consideration of no overproduction by the PV modules during the summer months. This means the optimized PV systems will be able to cover a larger part of summer demand compared with the existing system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years the number of bicycles with e-motors has been increased steadily. Within the pedelec – bikes where an e-motor supports the pedaling – a special group of transportation bikes has developed. These bikes have storage boxes in addition to the basic parts of a bike. Due to the space available on top of those boxes it is possible to install a PV system to generate electricity which could be used to recharge the battery of the pedelec. Such a system would lead to grid independent charging of the battery and to the possibility of an increased range of motor support. The feasibility of such a PV system is investigated for a three wheeled pedelec delivered by the company BABBOE NORDIC.The measured data of the electricity generation of this mobile system is compared to the possible electricity generation of a stationary system.To measure the consumption of the pedelec different tracks are covered, and the energy which is necessary to recharge the bike battery is measured using an energy logger. This recharge energy is used as an indirect measure of the electricity consumption. A PV prototype system is installed on the bike. It is a simple PV stand alone system consisting of PV panel, charge controller with MPP tracker and a solar battery. This system has the task to generate as much electricity as possible. The produced PV current and voltage aremeasured and documented using a data logger. Afterwards the average PV power is calculated. To compare the produced electricity of the on-bike system to that of a stationary system, the irradiance on the latter is measured simultaneously. Due to partial shadings on the on-bike PV panel, which are caused by the driver and some other bike parts, the average power output during riding the bike is very low. It is too low to support the motor directly. In case of a similar installation as the PV prototype system and the intention always to park the bike on a sunny spot an on-bike system could generate electricity to at least partly recharge a bike battery during one day. The stationary PV system using the same PV panel could have produced between 1.25 and 8.1 times as much as the on-bike PV system. Even though the investigation is done for a very specific case it can be concluded that anon-bike PV system, using similar components as in the investigation, is not feasible to recharge the battery of a pedelec in an appropriate manner. The biggest barrier is that partial shadings on the PV panel, which can be hardly avoided during operation and parking, result in a significant reduction of generated electricity. Also the installation of the on-bike PV system would lead to increased weight of the whole bike and the need for space which is reducing the storage capacity. To use solar energy for recharging a bike battery an indirect way is giving better results. In this case a stationary PV stand alone system is used which is located in a sunny spot without shadings and adjusted to use the maximum available solar energy. The battery of the bike is charged using the corresponding charger and an inverter which provides AC power using the captured solar energy.