9 resultados para Graphitic steels

em Dalarna University College Electronic Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a physically based model, the microstructural evolution of Nb microalloyed steels during rolling in SSAB Tunnplåt’s hot strip mill was modeled. The model describes the evolution of dislocation density, the creation and diffusion of vacancies, dynamic and static recovery through climb and glide, subgrain formation and growth, dynamic and static recrystallization and grain growth. Also, the model describes the dissolution and precipitation of particles. The impeding effect on grain growth and recrystallization due to solute drag and particles is accounted for. During hot strip rolling of Nb steels, Nb in solid solution retards recrystallization due to solute drag and at lower temperatures strain-induced precipitation of Nb(C,N) may occur which effectively retard recrystallization. The flow stress behavior during hot rolling was calculated where the mean flow stress values were calculated using both the model and measured mill data. The model showed that solute drag has an essential effect on recrystallization during hot rolling of Nb steels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stainless steels are well known to be prone to cold welding and material transfer in sliding contacts and therefore difficult to cold form unless certain precautions as discussed in this paper are taken. In the present study different combinations of tool steels/stainless steels/lubricants has been evaluated with respect to their galling resistance using pin-on-disc testing. The results show that a high galling resistance is favored by a high stainless steel sheet hardness and a blasted stainless steel sheet surface topography. The effect of type of lubricant was found to be more complex. For example, the chlorinated lubricants failed to prevent metal-to-metal contact on a brushed sheet surface but succeeded on a blasted sheet surface of the same stainless steel material. This is believed to be due to a protective tribofilm which is able to form on the blasted surface, but not on the brushed surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two simulative test methods were used to study galling in sheet forming of two types of stainlesssteel sheet: austenitic (EN 1.4301) and lean duplex LDX 2101 (EN 1.4162) in different surface conditions. Thepin-on-disc test was used to analyse the galling resistance of different combinations of sheet materials and lubricants. The strip reduction test, a severe sheet forming tribology test was used to simulate the conditionsduring ironing. This investigation shows that the risk of galling is highly dependent on the surface texture of theduplex steel. Trials were also performed in an industrial tool used for high volume production of pumpcomponents, to compare forming of LDX 2101 and austenitic stainless steel with equal thickness. The forming forces, the geometry and the strains in the sheet material were compared for the same component.It was found that LDX steels can be formed to high strain levels in tools normally applied for forming ofaustenitic steels, but tool adaptations are needed to comply with the higher strength and springback of thematerial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A dislocation model, accurately describing the uniaxial plastic stress-strain behavior of dual phase (DP) steels, is proposed and the impact of martensite content and ferrite grain size in four commercially produced DP steels is analyzed. It is assumed that the plastic deformation process is localized to the ferrite. This is taken into account by introducing a non-homogeneity parameter, f(e), that specifies the volume fraction of ferrite taking active part in the plastic deformation process. It is found that the larger the martensite content the smaller the initial volume fraction of active ferrite which yields a higher initial deformation hardening rate. This explains the high energy absorbing capacity of DP steels with high volume fractions of martensite. Further, the effect of ferrite grain size strengthening in DP steels is important. The flow stress grain size sensitivity for DP steels is observed to be 7 times larger than that for single phase ferrite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stainless steels were developed in the early 20th century and are used where both the mechanical properties of steels and corrosion resistance are required. There is continuous research to allow stainless steel components to be produced in a more economical way and be used in more harsh environments. A necessary component in this effort is to correlate the service performance with the production processes. The central theme of this thesis is the mechanical grinding process.  This is commonly used for producing stainless steel components, and results in varied surface properties that will strongly affect their service life. The influence of grinding parameters including abrasive grit size, machine power and grinding lubricant were studied for 304L austenitic stainless steel (Paper II) and 2304 duplex stainless steel (Paper I). Surface integrity was proved to vary significantly with different grinding parameters. Abrasive grit size was found to have the largest influence. Surface defects (deep grooves, smearing, adhesive/cold welding chips and indentations), a highly deformed surface layer up to a few microns in thickness and the generation of high level tensile residual stresses in the surface layer along the grinding direction were observed as the main types of damage when grinding stainless steels. A large degree of residual stress anisotropy is interpreted as being due to mechanical effects dominating over thermal effects. The effect of grinding on stress corrosion cracking behaviour of 304L austenitic stainless steel in a chloride environment was also investigated (Paper III). Depending on the surface conditions, the actual loading by four-point bend was found to deviate from the calculated value using the formula according to ASTM G39 by different amounts. Grinding-induced surface tensile residual stress was suggested as the main factor to cause micro-cracks initiation on the ground surfaces. Grinding along the loading direction was proved to increase the susceptibility to chloride-induced SCC, while grinding perpendicular to the loading direction improved SCC resistance. The knowledge obtained from this work can provide a reference for choosing appropriate grinding parameters when fabricating stainless steel components; and can also be used to help understanding the failure mechanism of ground stainless steel components during service.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The report examines the factors which may be a contributing cause to the problems that are present when ferritic stainless steel are eddy current tested in a warm condition. The work is carried out at Fagersta Stainless AB in Fagersta which manufactures stainless steel wire. In the rolling mill there is an eddy current equipment for detection of surface defects on the wire. The ferritic stainless steels cause a noise when testing and this noise complicates the detection of defects.Because of this, a study was made of how the noise related to factors such as steel grade, temperature, size and velocity. By observing the signal and with the possibilities to change the equipment settings the capability to let a signal filter reduce the noise level were evaluated. Theories about the material's physical properties have also been included, mainly the magnetic properties, electrical conductivity and the material's tendency to oxidize.Results from the tests show that a number of factors do not affect the inductive test significantly and to use a filter to reduce the noise level does not seem to be a viable option. The level of noise does not relate to the presence of superficial particles in form of oxides.The ferritic stainless steels showed some difference in noise level. Which noise level there was did match well with the steels probability for a precipitation of a second phase, and precipitation of austenite may in this case contribute to noise when using an eddy current instrument.The noise is probably due to some physical material property that varies within the thread.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the first questions to consider when designing a new roll forming line is the number of forming steps required to produce a profile. The number depends on material properties, the cross-section geometry and tolerance requirements, but the tool designer also wants to minimize the number of forming steps in order to reduce the investment costs for the customer. There are several computer aided engineering systems on the market that can assist the tool designing process. These include more or less simple formulas to predict deformation during forming as well as the number of forming steps. In recent years it has also become possible to use finite element analysis for the design of roll forming processes. The objective of the work presented in this thesis was to answer the following question: How should the roll forming process be designed for complex geometries and/or high strength steels? The work approach included both literature studies as well as experimental and modelling work. The experimental part gave direct insight into the process and was also used to develop and validate models of the process. Starting with simple geometries and standard steels the work progressed to more complex profiles of variable depth and width, made of high strength steels. The results obtained are published in seven papers appended to this thesis. In the first study (see paper 1) a finite element model for investigating the roll forming of a U-profile was built. It was used to investigate the effect on longitudinal peak membrane strain and deformation length when yield strength increases, see paper 2 and 3. The simulations showed that the peak strain decreases whereas the deformation length increases when the yield strength increases. The studies described in paper 4 and 5 measured roll load, roll torque, springback and strain history during the U-profile forming process. The measurement results were used to validate the finite element model in paper 1. The results presented in paper 6 shows that the formability of stainless steel (e.g. AISI 301), that in the cold rolled condition has a large martensite fraction, can be substantially increased by heating the bending zone. The heated area will then become austenitic and ductile before the roll forming. Thanks to the phenomenon of strain induced martensite formation, the steel will regain the martensite content and its strength during the subsequent plastic straining. Finally, a new tooling concept for profiles with variable cross-sections is presented in paper 7. The overall conclusions of the present work are that today, it is possible to successfully develop profiles of complex geometries (3D roll forming) in high strength steels and that finite element simulation can be a useful tool in the design of the roll forming process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This licentiate thesis has the main focus on evaluation of the wear of coated and uncoated polycrystalline cubic boron nitride cutting tool used in cutting operations against hardened steel. And to exam the surface finish and integrity of the work material used. Harder work material, higher cutting speed and cost reductions result in the development of harder and more wear resistance cutting tools. Although PCBN cutting tools have been used in over 30 years, little work have been done on PVD coated PCBN cutting tools. Therefore hard turning and hard milling experiments with PVD coated and uncoated cutting tools have been performed and evaluated. The coatings used in the present study are TiSiN and TiAlN. The wear scar and surface integrity have been examined with help of several different characterization techniques, for example scanning electron microscopy and Auger electron spectroscopy.   The results showed that the PCBN cutting tools used displayed crater wear, flank wear and edge micro chipping. While the influence of the coating on the crater and flank wear was very small and the coating showed a high tendency to spalling. Scratch testing of coated PCBN showed that, the TiAlN coating resulted in major adhesive fractures. This displays the importance of understanding the effect of different types of lapping/grinding processes in the pre-treatment of hard and super hard substrate materials and the amount and type of damage that they can create. For the cutting tools used in turning, patches of a adhered layer, mainly consisting of FexOy were shown at both the crater and flank. And for the cutting tools used in milling a tribofilm consisting of SixOy covered the crater. A combination of tribochemical reactions, adhesive wear and mild abrasive wear is believed to control the flank and crater wear of the PCBN cutting tools. On a microscopic scale the difference phases of the PCBN cutting tool used in turning showed different wear characteristics. The machined surface of the work material showed a smooth surface with a Ra-value in the range of 100-200 nm for the turned surface and 100-150 nm for the milled surface. With increasing crater and flank wear in combination with edge chipping the machined surface becomes rougher and showed a higher Ra-value. For the cutting tools used in milling the tendency to micro edge chipping was significant higher when milling the tools steels showing a higher hard phase content and a lower heat conductivity resulting in higher mechanical and thermal stresses at the cutting edge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Specimens from split Hopkinson pressure bar experiments, at strain rates between ~ 1000–9000 s− 1 at room temperature and 500 °C, have been studied using electron backscatter diffraction. No significant differences in the microstructures were observed at different strain rates, but were observed for different strains and temperatures. Size distribution for subgrains with boundary misorientations > 2° can be described as a bimodal lognormal area distribution. The distributions were found to change due to deformation. Part of the distribution describing the large subgrains decreased while the distribution for the small subgrains increased. This is in accordance with deformation being heterogeneous and successively spreading into the undeformed part of individual grains. The variation of the average size for the small subgrain distribution varies with strain but not with strain rate in the tested interval. The mean free distance for dislocation slip, interpreted here as the average size of the distribution of small subgrains, displays a variation with plastic strain which is in accordance with the different stages in the stress-strain curves. The rate of deformation hardening in the linear hardening range is accurately calculated using the variation of the small subgrain size with strain.