10 resultados para Forecasting areas

em Dalarna University College Electronic Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wider economic benefits resulting from extended geographical mobility is one argument for investments in high-speed rail. More specifically, the argument for high-speed trains in Sweden has been that they can help to further spatially extend labor market regions which in turn has a positive effect on growth and development. In this paper the aim is to cartographically visualize the potential size of the labor markets in areas that could be affected by possible future high-speed trains. The visualization is based on the forecasts of labor mobility with public transport made by the Swedish national mobility transport forecasting tool, SAMPERS, for two alternative high-speed rail scenarios. The analysis, not surprisingly, suggests that the largest impact of high-speed trains results in the area where the future high speed rail tracks are planned to be built. This expected effect on local labor market regions of high-speed trains could mean that possible regional economic development effects also are to be expected in this area. However, the results, in general, from the SAMPERS forecasts indicaterelatively small increases in local labor market potentials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ghana faces a macroeconomic problem of inflation for a long period of time. The problem in somehow slows the economic growth in this country. As we all know, inflation is one of the major economic challenges facing most countries in the world especially those in African including Ghana. Therefore, forecasting inflation rates in Ghana becomes very important for its government to design economic strategies or effective monetary policies to combat any unexpected high inflation in this country. This paper studies seasonal autoregressive integrated moving average model to forecast inflation rates in Ghana. Using monthly inflation data from July 1991 to December 2009, we find that ARIMA (1,1,1)(0,0,1)12 can represent the data behavior of inflation rate in Ghana well. Based on the selected model, we forecast seven (7) months inflation rates of Ghana outside the sample period (i.e. from January 2010 to July 2010). The observed inflation rate from January to April which was published by Ghana Statistical Service Department fall within the 95% confidence interval obtained from the designed model. The forecasted results show a decreasing pattern and a turning point of Ghana inflation in the month of July.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A massive amount has been written about forecasting but few articles are written about the development of time series models of call volumes for emergency services. In this study, we use different techniques for forecasting and make the comparison of the techniques for the call volume of the emergency service Rescue 1122 Lahore, Pakistan. For the purpose of this study data is taken from emergency calls of Rescue 1122 from 1st January 2008 to 31 December 2009 and 731 observations are used. Our goal is to develop a simple model that could be used for forecasting the daily call volume. Two different approaches are used for forecasting the daily call volume Box and Jenkins (ARIMA) methodology and Smoothing methodology. We generate the models for forecasting of call volume and present a comparison of the two different techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work concerns forecasting with vector nonlinear time series models when errorsare correlated. Point forecasts are numerically obtained using bootstrap methods andillustrated by two examples. Evaluation concentrates on studying forecast equality andencompassing. Nonlinear impulse responses are further considered and graphically sum-marized by highest density region. Finally, two macroeconomic data sets are used toillustrate our work. The forecasts from linear or nonlinear model could contribute usefulinformation absent in the forecasts form the other model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis consists of a summary and five self-contained papers addressing dynamics of firms in the Swedish wholesale trade sector. Paper [1] focuses upon determinants of new firm formation in the Swedish wholesale trade sector, using two definitions of firms’ relevant markets, markets defined as administrative areas, and markets based on a cost minimizing behavior of retailers. The paper shows that new entering firms tend to avoid regions with already high concentration of other firms in the same branch of wholesaling, while right-of-the-center local government and quality of the infrastructure have positive impacts upon entry of new firms. The signs of the estimated coefficients remain the same regardless which definition of relevant market is used, while the size of the coefficients is generally higher once relevant markets delineated on the cost-minimizing assumption of retailers are used. Paper [2] analyses determinant of firm relocation, distinguishing between the role of the factors in in-migration municipalities and out-migration municipalities. The results of the analysis indicate that firm-specific factors, such as profits, age and size of the firm are negatively related to the firm’s decision to relocate. Furthermore, firms seems to be avoiding municipalities with already high concentration of firms operating in the same industrial branch of wholesaling and also to be more reluctant to leave municipalities governed by right-of-the- center parties. Lastly, firms seem to avoid moving to municipalities characterized with high population density. Paper [3] addresses determinants of firm growth, adopting OLS and a quantile regression technique. The results of this paper indicate that very little of the firm growth can be explained by the firm-, industry- and region-specific factors, controlled for in the estimated models. Instead, the firm growth seems to be driven by internal characteristics of firms, factors difficult to capture in conventional statistics. This result supports Penrose’s (1959) suggestion that internal resources such as firm culture, brand loyalty, entrepreneurial skills, and so on, are important determinants of firm growth rates. Paper [4] formulates a forecasting model for firm entry into local markets and tests this model using data from the Swedish wholesale industry. The empirical analysis is based on directly estimating the profit function of wholesale firms and identification of low- and high-return local markets. The results indicate that 19 of 30 estimated models have more net entry in high-return municipalities, but the estimated parameters is only statistically significant at conventional level in one of our estimated models, and then with unexpected negative sign. Paper [5] studies effects of firm relocation on firm profits of relocating firms, employing a difference-in-difference propensity score matching. Using propensity score matching, the pre-relocalization differences between relocating and non-relocating firms are balanced, while the difference-in-difference estimator controls for all time-invariant unobserved heterogeneity among firms. The results suggest that firms that relocate increase their profits significantly, in comparison to what the profits would be had the firms not relocated. This effect is estimated to vary between 3 to 11 percentage points, depending on the length of the analyzed period. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Location Models are usedfor planning the location of multiple service centers in order to serve a geographicallydistributed population. A cornerstone of such models is the measure of distancebetween the service center and a set of demand points, viz, the location of thepopulation (customers, pupils, patients and so on). Theoretical as well asempirical evidence support the current practice of using the Euclidian distancein metropolitan areas. In this paper, we argue and provide empirical evidencethat such a measure is misleading once the Location Models are applied to ruralareas with heterogeneous transport networks. This paper stems from the problemof finding an optimal allocation of a pre-specified number of hospitals in alarge Swedish region with a low population density. We conclude that the Euclidianand the network distances based on a homogenous network (equal travel costs inthe whole network) give approximately the same optimums. However networkdistances calculated from a heterogeneous network (different travel costs indifferent parts of the network) give widely different optimums when the numberof hospitals increases.  In terms ofaccessibility we find that the recent closure of hospitals and the in-optimallocation of the remaining ones has increased the average travel distance by 75%for the population. Finally, aggregation the population misplaces the hospitalsby on average 10 km.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The p-median model is used to locate P facilities to serve a geographically distributed population. Conventionally, it is assumed that the population patronize the nearest facility and that the distance between the resident and the facility may be measured by the Euclidean distance. Carling, Han, and Håkansson (2012) compared two network distances with the Euclidean in a rural region witha sparse, heterogeneous network and a non-symmetric distribution of thepopulation. For a coarse network and P small, they found, in contrast to the literature, the Euclidean distance to be problematic. In this paper we extend their work by use of a refined network and study systematically the case when P is of varying size (2-100 facilities). We find that the network distance give as gooda solution as the travel-time network. The Euclidean distance gives solutions some 2-7 per cent worse than the network distances, and the solutions deteriorate with increasing P. Our conclusions extend to intra-urban location problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gradual changes in the world development have brought energy issues back into high profile. An ongoing challenge for countries around the world is to balance the development gains against its effects on the environment. The energy management is the key factor of any sustainable development program. All the aspects of development in agriculture, power generation, social welfare and industry in Iran are crucially related to the energy and its revenue. Forecasting end-use natural gas consumption is an important Factor for efficient system operation and a basis for planning decisions. In this thesis, particle swarm optimization (PSO) used to forecast long run natural gas consumption in Iran. Gas consumption data in Iran for the previous 34 years is used to predict the consumption for the coming years. Four linear and nonlinear models proposed and six factors such as Gross Domestic Product (GDP), Population, National Income (NI), Temperature, Consumer Price Index (CPI) and yearly Natural Gas (NG) demand investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The p-median problem is often used to locate P service facilities in a geographically distributed population. Important for the performance of such a model is the distance measure. Distance measure can vary if the accuracy of the road network varies. The rst aim in this study is to analyze how the optimal location solutions vary, using the p-median model, when the road network is alternated. It is hard to nd an exact optimal solution for p-median problems. Therefore, in this study two heuristic solutions are applied, simulating annealing and a classic heuristic. The secondary aim is to compare the optimal location solutions using dierent algorithms for large p-median problem. The investigation is conducted by the means of a case study in a rural region with an asymmetrically distributed population, Dalecarlia. The study shows that the use of more accurate road networks gives better solutions for optimal location, regardless what algorithm that is used and regardless how many service facilities that is optimized for. It is also shown that the simulated annealing algorithm not just is much faster than the classic heuristic used here, but also in most cases gives better location solutions.