12 resultados para Flue gas
em Dalarna University College Electronic Archive
Resumo:
A literature survey and a theoretical study were performed to characterize residential chimney conditions for flue gas flow measurements. The focus is on Pitot-static probes to give sufficient basis for the development and calibration of a velocity pressure averaging probe suitable for the continuous dynamic (i.e. non steady state) measurement of the low flow velocities present in residential chimneys. The flow conditions do not meet the requirements set in ISO 10780 and ISO 3966 for Pitot-static probe measurements, and the methods and their uncertainties are not valid. The flow velocities in residential chimneys from a heating boiler under normal operating condi-tions are shown to be so low that they in some conditions result in voiding the assumptions of non-viscous fluid justifying the use of the quadratic Bernoulli equation. A non-linear Reynolds number dependent calibration coefficient that is correcting for the viscous effects is needed to avoid significant measurement errors. The wide range of flow velocity during normal boiler operation also results in the flow type changing from laminar, across the laminar to turbulent transition region, to fully turbulent flow, resulting in significant changes of the velocity profile during dynamic measurements. In addition, the short duct lengths (and changes of flow direction and duct shape) used in practice are shown to result in that the measurements are done in the hydrodynamic entrance region where the flow velocity profiles most likely are neither symmetrical nor fully developed. A measurement method insensitive to velocity profile changes is thus needed, if the flow velocity profile cannot otherwise be determined or predicted with reasonable accuracy for the whole measurement range. Because of particulate matter and condensing fluids in the flue gas it is beneficial if the probe can be constructed so that it can easily be taken out for cleaning, and equipped with a locking mechanism to always ensure the same alignment in the duct without affecting the calibration. The literature implies that there may be a significant time lag in the measurements of low flow rates due to viscous effects in the internal impact pressure passages of Pitot probes, and the significance in the discussed application should be studied experimentally. The measured differential pressures from Pitot-static probes in residential chimney flows are so low that the calibration and given uncertainties of commercially available pressure transducers are not adequate. The pressure transducers should be calibrated specifically for the application, preferably in combination with the probe, and the significance of all different error sources should be investigated carefully. Care should be taken also with the temperature measurement, e.g. with averaging of several sensors, as significant temperature gradients may be present in flue gas ducts.
Resumo:
Performance testing methods of boilers in transient operating conditions (start, stop and combustion power modulation sequences) need the combustion rate quantified to allow for the emissions to be quantified. One way of quantifying the combustion rate of a boiler during transient operating conditions is by measuring the flue gas flow rate. The flow conditions in chimneys of single family house boilers pose a challenge however, mainly because of the low flow velocity. The main objectives of the work were to characterize the flow conditions in residential chimneys, to evaluate the use of the Pitot-static method and the averaging Pitot method, and to develop and test a calibration method for averaging Pitot probes for low
Resumo:
Various pellet heating systems are marketed in Sweden, some of them in combination with a solar heating system. Several types of pellet heating units are available and can be used for a combined system. This article compares four typical combined solar and pellet heating systems: System 1 and 2 two with a pellet stove, system 3 with a store integrated pellet burner and system 4 with a pellet boiler. The lower efficiency of pellet heaters compared to oil or gas heaters increases the primary energy demand. Consequently heat losses of the various systems have been studied. The systems have been modeled in TRNSYS and simulated with parameters identified from measurements. For almost all systems the flue gas losses are the main heat losses except for system 3 where store heat losses prevail. Relevant are also the heat losses of the burner and the boiler to the ambient. Significant leakage losses are noticed for system 3 and 4. For buildings with an open internal design system 1 is the most efficient solution. Other buildings should preferably apply system 3. The right choice of the system depends also on whether the heater is placed inside or outside of the heated are. A large potential for system optimization exist for all studied systems, which when applied could alter the relative merits of the different system types.
Methodology for identifying parameters for the TRNSYS model Type 210 -wood pellet stoves and boilers
Resumo:
This report describes a method how to perform measurements on boilers and stoves and how to identify parameters from the measurements for the boiler/stove-model TRNSYS Type 210. The model can be used for detailed annual system simulations using TRNSYS. Experience from measurements on three different pellet stoves and four boilers were used to develop this methodology. Recommendations for the set up of measurements are given and the re-quired combustion theory for the data evaluation and data preparation are given. The data evalua-tion showed that the uncertainties are quite large for the measured flue gas flow rate and for boilers and stoves with high fraction of energy going to the water jacket also the calculated heat rate to the room may have large uncertainties. A methodology for the parameter identification process and identified parameters for two different stoves and three boilers are given. Finally the identified models are compared with measured data showing that the model generally agreed well with meas-ured data during both stationary and dynamic conditions.
Resumo:
The aim of this study was to investigate how electricallyheated houses can be converted to using wood pellet and solarheating. There are a large number of wood pellet stoves on themarket. Many stoves have a water jacket, which gives anopportunity to distribute the heat to domestic hot water and aradiator heating system. Three typical Swedish houses with electric resistanceheating have been studied. Fourteen different system conceptsusing wood pellet stoves and solar heating systems have beenevaluated. The systems and the houses have been simulated indetail using TRNSYS. The houses have been divided in up to 10different zones and heat transfer by air circulation throughdoorways and open doors have been simulated. The pellet stoveswere simulated using a recently developed TRNSYS component,which models the start- and stop phases, emissions and thedynamic behaviour of the stoves. The model also calculates theCO-emissions. Simulations were made with one stove without awater jacket and two stoves with different fractions of thegenerated heat distributed in the water circuit. Simulations show that the electricity savings using a pelletstove are greatly affected by the house plan, the systemchoice, if the internal doors are open or closed and thedesired level of comfort. Installing a stove with awater-jacket connected to a radiator system and a hot waterstorage has the advantage that heat can be transferred todomestic hot water and be distributed to other rooms. Suchsystems lead to greater electricity savings, especially inhouses having a traditional layout. It was found that not allrooms needed radiators and that it was more effective in mostcases t use a stove with a higher fraction of the heatdistributed by the water circuit. The economic investigation shows that installing a woodpellet stove without a water jacket gives the lowest totalenergy- and capital costs in the house with an open plan (fortoday's energy prices and the simulated comfort criteria). Inthe houses with a traditional layout a pellet stove givesslightly higher costs than the reference house having onlyelectrical resistance heating due to the fact that less heatingcan be replaced. The concepts including stoves with a waterjacket all give higher costs than the reference system, but theconcept closest to be economical is a system with a bufferstore, a stove with a high fraction of the heat distributed bythe water circuit, a new water radiator heating system and asolar collector. Losses from stoves can be divided into: flue gas lossesincluding leakage air flow when the stove is not in operation;losses during start and stop phases; and losses due to a highair factor. An increased efficiency of the stoves is importantboth from a private economical point of view, but also from theperspective that there can be a lack of bio fuel in the nearfuture also in Sweden. From this point of view it is alsoimportant to utilize as much solar heat as possible. Theutilization of solar heat is low in the simulated systems,depending on the lack of space for a large buffer store. The simulations have shown that the annual efficiency ismuch lower that the nominal efficiency at full power. Thesimulations have also shown that changing the control principlefor the stove can improve efficiency and reduce theCO-emissions. Today's most common control principle for stovesis the on/off control, which results in many starts and stopsand thereby high CO-emissions. A more advanced control varyingthe heating rate from maximum to minimum to keep a constantroom temperature reduces the number of starts and stops andthereby the emissions. Also the efficiency can be higher withsuch a control, and the room temperature will be kept at a moreconstant temperature providing a higher comfort.
Resumo:
The submerged entry nozzle (SEN) is used to transport the molten steel from a tundish to a mould. The main purpose of its usage is to prevent oxygen and nitrogen pick-up by molten steel from the gas. Furthermore, to achieve the desired flow conditions in the mould. Therefore, the SEN can be considered as a vital factor for a stable casting process and the steel quality. In addition, the steelmaking processes occur at high temperatures around 1873 K, so the interaction between the refractory materials of the SEN and molten steel is unavoidable. Therefore, the knowledge of the SEN behaviors during preheating and casting processes is necessary for the design of the steelmaking processes The internal surfaces of modern SENs are coated with a glass/silicon powder layer to prevent the SEN graphite oxidation during preheating. The effects of the interaction between the coating layer and the SEN base refractory materials on clogging were studied. A large number of accretion samples formed inside alumina-graphite clogged SENs were examined using FEG-SEM-EDS and Feature analysis. The internal coated SENs were used for continuous casting of stainless steel grades alloyed with Rare Earth Metals (REM). The post-mortem study results clearly revealed the formation of a multi-layer accretion. A harmful effect of the SENs decarburization on the accretion thickness was also indicated. In addition, the results indicated a penetration of the formed alkaline-rich glaze into the alumina-graphite base refractory. More specifically, the alkaline-rich glaze reacts with graphite to form a carbon monoxide gas. Thereafter, dissociation of CO at the interface between SEN and molten metal takes place. This leads to reoxidation of dissolved alloying elements such as REM (Rare Earth Metal). This reoxidation forms the “In Situ” REM oxides at the interface between the SEN and the REM alloyed molten steel. Also, the interaction of the penetrated glaze with alumina in the SEN base refractory materials leads to the formation of a high-viscous alumina-rich glaze during the SEN preheating process. This, in turn, creates a very uneven surface at the SEN internal surface. Furthermore, these uneven areas react with dissolved REM in molten steel to form REM aluminates, REM silicates and REM alumina-silicates. The formation of the large “in-situ” REM oxides and the reaction of the REM alloying elements with the previously mentioned SEN´s uneven areas may provide a large REM-rich surface in contact with the primary inclusions in molten steel. This may facilitate the attraction and agglomeration of the primary REM oxide inclusions on the SEN internal surface and thereafter the clogging. The study revealed the disadvantages of the glass/silicon powder coating applications and the SEN decarburization. The decarburization behaviors of Al2O3-C, ZrO2-C and MgO-C refractory materials from a commercial Submerged Entry Nozzle (SEN), were also investigated for different gas atmospheres consisting of CO2, O2 and Ar. The gas ratio values were kept the same as it is in a propane combustion flue gas at different Air-Fuel-Ratio (AFR) values for both Air-Fuel and Oxygen-Fuel combustion systems. Laboratory experiments were carried out under nonisothermal conditions followed by isothermal heating. The decarburization ratio (α) values of all three refractory types were determined by measuring the real time weight losses of the samples. The results showed the higher decarburization ratio (α) values increasing for MgO-C refractory when changing the Air-Fuel combustion to Oxygen-Fuel combustion at the same AFR value. It substantiates the SEN preheating advantage at higher temperatures for shorter holding times compared to heating at lower temperatures during longer holding times for Al2O3-C samples. Diffusion models were proposed for estimation of the decarburization rate of an Al2O3-C refractory in the SEN. Two different methods were studied to prevent the SEN decarburization during preheating: The effect of an ZrSi2 antioxidant and the coexistence of an antioxidant additive and a (4B2O3 ·BaO) glass powder on carbon oxidation for non-isothermal and isothermal heating conditions in a controlled atmosphere. The coexistence of 8 wt% ZrSi2 and 15 wt% (4B2O3 ·BaO) glass powder of the total alumina-graphite refractory base materials, presented the most effective resistance to carbon oxidation. The 121% volume expansion due to the Zircon formation during heating and filling up the open pores by a (4B2O3 ·BaO) glaze during the green body sintering led to an excellent carbon oxidation resistance. The effects of the plasma spray-PVD coating of the Yttria Stabilized Zirconia (YSZ) powder on the carbon oxidation of the Al2O3-C coated samples were investigated. Trials were performed at non-isothermal heating conditions in a controlled atmosphere. Also, the applied temperature profile for the laboratory trials were defined based on the industrial preheating trials. The controlled atmospheres consisted of CO2, O2 and Ar. The thicknesses of the decarburized layers were measured and examined using light optic microscopy, FEG-SEM and EDS. A 250-290 μm YSZ coating is suggested to be an appropriate coating, as it provides both an even surface as well as prevention of the decarburization even during heating in air. In addition, the interactions between the YSZ coated alumina-graphite refractory base materials in contact with a cerium alloyed molten stainless steel were surveyed. The YSZ coating provided a total prevention of the alumina reduction by cerium. Therefore, the prevention of the first clogging product formed on the surface of the SEN refractory base materials. Therefore, the YSZ plasma-PVD coating can be recommended for coating of the hot surface of the commercial SENs.
Resumo:
In this study, gaseous emissions and particles are measured during start-up and stop periods for an over-fed boiler and an under-fed boiler. Both gaseous and particulate matter emissions are continuously measured in the laboratory. The measurement of gaseous emissions includes oxygen (O2), carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxide and (NO). The emissions rates are calculated from measured emissions concentrations and flue gas flow. The behaviours of the boilers during start-up and stop periods are analysed and the emissions are characterised in terms of CO, NO, TOC and particles (PM2.5 mass and number). The duration of the characterised periods vary between two boilers due to the difference in type of ignition and combustion control. The under-fed boiler B produces higher emissions during start-up periods than the over-fed boiler A. More hydrocarbon and particles are emitted by the under-fed boiler during stop periods. Accumulated mass of CO and TOC during start-up and stop periods contribute a major portion of the total mass emitted during whole operation. However, accumulated mass of NO and PM during start-up and stop periods are not significant as the duration of emission peak is relatively short.
Resumo:
Sealed gas filled flat plate solar collectors will have stresses in the material since volume and pressure varies in the gas when the temperature changes. Several geometries were analyzed and it could be seen that it is possible reducing the stresses and improve the safety factor of the weakest point in the construction by using larger area and/or reducing the distance between glass and absorber and/or change width and height relationship so the tubes are getting longer. Further it could be shown that the safety factor won't always get improved with reinforcements. It is so because when an already strong part of the collector gets reinforced it will expose weaker parts for higher stresses. The finite element method was used for finding out the stresses.
Resumo:
With a suitable gas filling used between cover glass and absorber in a flat plate solar collector, it is possible achieving better thermal performance at the same time as the distance betweenabsorber and glass can be reduced. Though, even if there is no vacuum inside the box, there will be potential risks for exhaustion due to stresses depending on the gas volume varies as the temperature varies. This study found out that it is possible build such a collector with less material in the absorber and the tubes and still getting better performance, without risks for exhaustion.
Resumo:
This work treats the thermal and mechanical performances of gas-filled, flat plate solar collectors in order to achieve a better performance than that of air filled collectors. The gases examined are argon, krypton and xenon which all have lower thermal conductivity than air. The absorber is formed as a tray connected to the glass. The pressure of the gas inside is near to the ambient and since the gas volume will vary as the temperature changes, there are potential risks for fatigue in the material. One heat transfer model and one mechanical model were built. The mechanical model gave stresses and information on the movements. The factors of safety were calculated from the stresses, and the movements were used as input for the heat transfer model where the thermal performance was calculated. It is shown that gas-filled, flat plate solar collectors can be designed to achieve good thermal performance at a competitive cost. The best yield is achieved with a xenon gas filling together with a normal thick absorber, where normal thick means a 0.25 mm copper absorber. However, a great deal of energy is needed to produce the xenon gas, and if this aspect is taken into account, the krypton filling is better. Good thermal performance can also be achieved using less material; a collector with a 0.1 mm thick copper absorber and the third best gas, which is argon, still gives a better operating performance than a common, commercially produced, air filled collector with a 0.25 mm absorber. When manufacturing gas-filled flat plate solar collectors, one way of decreasing the total material costs significantly, is by changing absorber material from copper to aluminium. Best yield per monetary outlay is given by a thin (0.3 mm) alu-minium absorber with an argon filling. A high factor of safety is achieved with thin absorbers, large absorber areas, rectangular constructions with long tubes and short distances between glass and absorber. The latter will also give a thin layer of gas which gives good thermal performance. The only doubtii ful construction is an argon filled collector with a normal thick (> 0.50 mm) aluminium absorber. In general, an assessment of the stresses for the proposed construction together with appropriate tests are recommended before manufacturing, since it is hard to predict the factor of safety; if one part is reinforced, some other parts can experience more stress and the factor of safety actually drops.
Resumo:
A sealed space between absorber and cover glass makes it possible reducing the influence of humidity condensate and dust at the same time as the enclosed space can be filled with a suitable gas for lowering the losses. This paper is about the size of the losses in these collectors. A calculating model of a gas-filled flat plate solar collector was built in Matlab with standard heat transfer formulas. It showed that the total loss can be reduced up to 20% when changing to an inert gas. It is also possible using a much shorter distance and still achieve low losses at the same time as the mechanical stresses in the material is reduce.
Resumo:
The gradual changes in the world development have brought energy issues back into high profile. An ongoing challenge for countries around the world is to balance the development gains against its effects on the environment. The energy management is the key factor of any sustainable development program. All the aspects of development in agriculture, power generation, social welfare and industry in Iran are crucially related to the energy and its revenue. Forecasting end-use natural gas consumption is an important Factor for efficient system operation and a basis for planning decisions. In this thesis, particle swarm optimization (PSO) used to forecast long run natural gas consumption in Iran. Gas consumption data in Iran for the previous 34 years is used to predict the consumption for the coming years. Four linear and nonlinear models proposed and six factors such as Gross Domestic Product (GDP), Population, National Income (NI), Temperature, Consumer Price Index (CPI) and yearly Natural Gas (NG) demand investigated.