3 resultados para Flakiness ratio
em Dalarna University College Electronic Archive
Resumo:
Photovoltaic Thermal/Hybrid collectors are an emerging technology that combines PV and solar thermal collectors by producing heat and electricity simultaneously. In this paper, the electrical performance evaluation of a low concentrating PVT collector was done through two testing parts: power comparison and performance ratio testing. For the performance ratio testing, it is required to identify and measure the factors affecting the performance ratio on a low concentrating PVT collector. Factors such as PV cell configuration, collector acceptance angle, flow rate, tracking the sun, temperature dependence and diffuse to irradiance ratio. Solarus low concentrating PVT collector V12 was tested at Dalarna University in Sweden using the electrical equipment at the solar laboratory. The PV testing has showed differences between the two receivers. Back2 was producing 1.8 energy output more than Back1 throughout the day. Front1 and Front2 were almost the same output performance. Performance tests showed that the cell configuration for Receiver2 with cells grouping (6- 32-32-6) has proved to have a better performance ratio when to it comes to minimizing the shading effect leading to more output power throughout the day because of lowering the mismatch losses. Different factors were measured and presented in this thesis in chapter 5. With the current design, it has been obtained a peak power at STC of 107W per receiver. The solar cells have an electrical efficiency of approximately 19% while the maximum measured electrical efficiency for the collector was approximately 18 % per active cell area, in addition to a temperature coefficient of -0.53%/ ˚C. Finally a recommendation was done to help Solarus AB to know how much the electrical performance is affected during variable ambient condition and be able to use the results for analyzing and introducing new modification if needed.
Resumo:
The aim of this study was 1) to validate the 0.5 body-mass exponent for maximal oxygen uptake (V. O2max) as the optimal predictor of performance in a 15 km classical-technique skiing competition among elite male cross-country skiers and 2) to evaluate the influence of distance covered on the body-mass exponent for V. O2max among elite male skiers. Twenty-four elite male skiers (age: 21.4±3.3 years [mean ± standard deviation]) completed an incremental treadmill roller-skiing test to determine their V. O2max. Performance data were collected from a 15 km classicaltechnique cross-country skiing competition performed on a 5 km course. Power-function modeling (ie, an allometric scaling approach) was used to establish the optimal body-mass exponent for V . O2max to predict the skiing performance. The optimal power-function models were found to be race speed = 8.83⋅(V . O2max m-0.53) 0.66 and lap speed = 5.89⋅(V . O2max m-(0.49+0.018lap)) 0.43e0.010age, which explained 69% and 81% of the variance in skiing speed, respectively. All the variables contributed to the models. Based on the validation results, it may be recommended that V. O2max divided by the square root of body mass (mL⋅min−1 ⋅kg−0.5) should be used when elite male skiers’ performance capability in 15 km classical-technique races is evaluated. Moreover, the body-mass exponent for V . O2max was demonstrated to be influenced by the distance covered, indicating that heavier skiers have a more pronounced positive pacing profile (ie, race speed gradually decreasing throughout the race) compared to that of lighter skiers.
Resumo:
Speech perception runs smoothly and automatically when there is silence in the background, but when the speech signal is degraded by background noise or by reverberation, effortful cognitive processing is needed to compensate for the signal distortion. Previous research has typically investigated the effects of signal-to-noise ratio (SNR) and reverberation time in isolation, whilst few have looked at their interaction. In this study, we probed how reverberation time and SNR influence recall of words presented in participants' first- (L1) and second-language (L2). A total of 72 children (10 years old) participated in this study. The to-be-recalled wordlists were played back with two different reverberation times (0.3 and 1.2 s) crossed with two different SNRs (+3 dBA and +12 dBA). Children recalled fewer words when the spoken words were presented in L2 in comparison with recall of spoken words presented in L1. Words that were presented with a high SNR (+12 dBA) improved recall compared to a low SNR (+3 dBA). Reverberation time interacted with SNR to the effect that at +12 dB the shorter reverberation time improved recall, but at +3 dB it impaired recall. The effects of the physical sound variables (SNR and reverberation time) did not interact with language. © 2016 Hurtig, Keus van de Poll, Pekkola, Hygge, Ljung and Sörqvist.